Advertisement

International Journal of Fracture

, Volume 214, Issue 1, pp 97–104 | Cite as

Crack onset and propagation stability from a circular hole under biaxial loading

  • A. Sapora
  • P. Cornetti
Brief Note
  • 210 Downloads

Abstract

The brittle crack initiation from a circular hole in an infinite slab subjected to remote biaxial loading is investigated by means of the coupled finite fracture mechanics criterion, focussing on the behaviour of the average energy release rate. The work then analyzes the stability/instability of crack growth, following the terminology put forward by Weißgraeber et al. (Eng Fract Mech 168:93–104, 2016). Depending on the loading biaxiality and on the ratio between the crack advance and the hole radius, the crack propagation could reveal to be either unstable (positive geometries), or stable (negative geometries). Furthermore, it is shown that stable paths could follow unstable paths and vice-versa, leading to locally positive/globally negative or locally negative/globally positive configurations, which are discussed in detail case by case.

Keywords

Circular hole Biaxial loading Crack onset Energy release rate Finite fracture mechanics Instability 

Notes

References

  1. Bažant ZP, Planas J (1998) Fracture and size effect in concrete and other quasibrittle materials. CRC Press, LondonGoogle Scholar
  2. Camanho PP, Erçin G, Catalanotti G, Mahdi D, Linde P (2012) A finite fracture mechanics model for the prediction of the open-hole strength of composite laminates. Compos Part A Appl Sci Manuf 43:1219–1225CrossRefGoogle Scholar
  3. Carpinteri A, Cornetti P, Pugno N, Sapora A, Taylor D (2008) A finite fracture mechanics approach to structures with sharp V-notches. Eng Fract Mech 75:1736–1752CrossRefGoogle Scholar
  4. Cornetti P, Pugno N, Carpinteri A, Taylor D (2006) Finite fracture mechanics: a coupled stress and energy failure criterion. Eng Fract Mech 73:2021–33CrossRefGoogle Scholar
  5. Carter BJ, Lajtai EZ, Yuan Y (1992) Tensile fracture from circular cavities loaded in compression. Int J Fract 57:221–236Google Scholar
  6. Furtado C, Arteiro A, Bessa MA, Wardle BL, Camanho PP (2017) Prediction of size effects in open-hole laminates using only the Young’s modulus, the strength, and the R-curve of the \(0^\circ \) ply. Compos Part A Appl Sci Manuf 101:306–317CrossRefGoogle Scholar
  7. García I, Mantic V, Graciani E (2015) A model for the prediction of debond onset in spherical-particle-reinforced composites under tension. Application of a coupled stress and energy criterion. Compos Sci Technol 106:60–7CrossRefGoogle Scholar
  8. Hell S, Weißgraeber P, Felger J, Becker W (2014) A coupled stress and energy criterion for the assessment of crack initiation in single lap joints: a numerical approach. Eng Fract Mech 117:112–26CrossRefGoogle Scholar
  9. Kirsch EG (1898) Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre. Z Ver dtsch Ing 42:797–807Google Scholar
  10. Lecampion B (2012) Modeling size effects associated with tensile fracture initiation from a wellbore. Int J Rock Mech Min Sci 56:67–76CrossRefGoogle Scholar
  11. Leguillon D (2002) Strength or toughness? A criterion for crack onset at a notch. Eur J Mech A/Solids 21:61–72CrossRefGoogle Scholar
  12. Leguillon D, Martin E (2013a) The strengthening effect caused by an elastic contrast—Part I: the bimaterial case. Int J Fract 179:157–67CrossRefGoogle Scholar
  13. Leguillon D, Martin E (2013b) The strengthening effect caused by an elastic contrast—Part II: stratification by a thin stiff layer. Int J Fract 179:169–178CrossRefGoogle Scholar
  14. Leguillon D, Quesada D, Putot C, Martin E (2007) Prediction of crack initiation at blunt notches and cavities: size effects. Eng Fract Mech 74:2420–36CrossRefGoogle Scholar
  15. Mantič V (2009) Interface crack onset at a circular cylindrical inclusion under a remote transverse tension. Application of a coupled stress and energy criterion. Int J Solids Struct 46:287–1304CrossRefGoogle Scholar
  16. Rosendahl PL, Weißgraeber P, Stein N, Becker W (2017) Asymmetric crack onset at open-holes under tensile and in-plane bending loading. Int J Solids Struct 113–114:10–23CrossRefGoogle Scholar
  17. Sapora A, Torabi AR, Etesam S, Cornetti P (2018) Finite Fracture Mechanics crack initiation from a circular hole. Fatigue Fract Eng Mater Struct 41:1627–1636CrossRefGoogle Scholar
  18. Tada H, Paris P, Irwin G (2000) The stress analysis of cracks handbook, 3rd edn. Paris Productions Incorporated, St LouisCrossRefGoogle Scholar
  19. Taylor D (2007) The theory of critical distances: a new perspective in fracture mechanics. Elsevier, OxfordGoogle Scholar
  20. Taylor D, Cornetti P, Pugno N (2005) The fracture mechanics of finite crack extension. Eng Fract Mech 72:1021–1038CrossRefGoogle Scholar
  21. Torabi AR, Etesam S, Sapora A, Cornetti P (2017) Size effects on brittle fracture of Brazilian disk samples containing a circular hole. Eng Fract Mech 186:496–503CrossRefGoogle Scholar
  22. Weißgraeber P, Hell S, Becker W (2016) Crack nucleation in negative geometries. Eng Fract Mech 168:93–104CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Structural, Geotechnical and Building EngineeringPolitecnico di TorinoTurinItaly

Personalised recommendations