Advertisement

International Journal of Fracture

, Volume 210, Issue 1–2, pp 153–166 | Cite as

Scaling of brittle failure: strength versus toughness

  • Laurent Brochard
  • Sabri Souguir
  • Karam Sab
Original Paper

Abstract

We study the scaling of strength and toughness in function of temperature, loading rate and system size, to investigate the difference between tensile failure and fracture failure. Molecular simulation is used to estimate the failure of intact and cracked bodies while varying temperature, strain rate and system size over many orders of magnitude, making it possible to identify scaling laws. Two materials are considered: an idealized toy model, for which a scaling law can be derived analytically, and a realistic molecular model of graphene. The results show that strength and toughness follow very similar scalings with temperature and loading rate, but differ markedly regarding the scaling with system size. Strength scales with the number of atoms whereas toughness scales with the number of cracks. It means that intermediate situations of moderate stress concentrations (e.g., notch) can exhibit not obvious size scaling, in-between those of strength and toughness. Following a theoretical analysis of failure as a thermally activated process, we could rationalize the observed scaling and formulate a general rate–temperature–size equivalence. The scaling law of the toy model can be derived rigorously but is not representative of real materials because of a force discontinuity in the potential. A more representative scaling law, valid for graphene, is proposed with a different exponent.

Keywords

Strength Toughness Scaling law Graphene 

Notes

Acknowledgements

We gratefully acknowledge funding from the Labex MMCD provided by the national program Investments for the Future of the French National Research Agency (ANR-11-LABX-022-01)

References

  1. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, OxfordGoogle Scholar
  2. Anderson TL (2005) Fracture mechanics: fundamentals and applications. CRC Press, Boca RatonGoogle Scholar
  3. Argon A (1979) Plastic deformation in metallic glasses. Acta Metall 27(1):47–58.  https://doi.org/10.1016/0001-6160(79)90055-5. http://linkinghub.elsevier.com/retrieve/pii/0001616079900555
  4. Bazant ZP, Chen EP (1997) Scaling of structural failure. Appl Mech Rev 50(10):593.  https://doi.org/10.1115/1.3101672. http://appliedmechanicsreviews.asmedigitalcollection.asme.org/article.aspx?articleid=1396002
  5. Belytschko T, Xiao SP, Schatz GC, Ruoff RS (2002) Atomistic simulations of nanotube fracture. Phys Rev B 65(23):235430.  https://doi.org/10.1103/PhysRevB.65.235430 CrossRefGoogle Scholar
  6. Brenner DW (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 42(15):9458–9471.  https://doi.org/10.1103/PhysRevB.46.1948.2. http://link.aps.org/doi/10.1103/PhysRevB.42.9458
  7. Brochard L, Hantal G, Laubie H, Ulm FJ, Pellenq RJM (2015) Capturing material toughness by molecular simulation: accounting for large yielding effects and limits. Int J Fract 194(2):149–167.  https://doi.org/10.1007/s10704-015-0045-y CrossRefGoogle Scholar
  8. Brochard L, Tejada IG, Sab K (2016) From yield to fracture, failure initiation captured by molecular simulation. J Mech Phys Solids 95:632–646.  https://doi.org/10.1016/j.jmps.2016.05.005. http://www.sciencedirect.com/science/article/pii/S0022509616300424. http://linkinghub.elsevier.com/retrieve/pii/S0022509616300424
  9. Carpinteri A (1994) Scaling laws and renormalization groups for strength and toughness of disordered materials. Int J Solids Struct 31(3):291–302.  https://doi.org/10.1016/0020-7683(94)90107-4. http://linkinghub.elsevier.com/retrieve/pii/0020768394901074
  10. Carpinteri A, Pugno N (2005) Are scaling laws on strength of solids related to mechanics or to geometry? Nat Mater 4(6):421–423.  https://doi.org/10.1038/nmat1408 CrossRefGoogle Scholar
  11. Dewapriya MAN, Rajapakse RKND, Phani AS (2014) Atomistic and continuum modelling of temperature-dependent fracture of graphene. Int J Fract 187(2):199–212.  https://doi.org/10.1007/s10704-014-9931-y CrossRefGoogle Scholar
  12. Dugdale D (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104.  https://doi.org/10.1016/0022-5096(60)90013-2 CrossRefGoogle Scholar
  13. Dumitrica T, Hua M, Yakobson BI (2006) Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. Proc Natl Acad Sci 103(16):6105–6109.  https://doi.org/10.1073/pnas.0600945103 CrossRefGoogle Scholar
  14. Flores KM, Dauskardt RH (1999) Enhanced toughness due to stable crack tip damage zones in bulk metallic glass. Scr Mater 41(9):937–943.  https://doi.org/10.1016/S1359-6462(99)00243-2. http://linkinghub.elsevier.com/retrieve/pii/S1359646299002432
  15. Frenkel D, Smit B (2002) Undestanding molecular simulation: from algorithms to applications, 2nd edn. Academic Press, New YorkGoogle Scholar
  16. Johnson WL, Samwer K (2005) A universal criterion for plastic yielding of metallic glasses with a (T/Tg)\(^{\wedge }\)(2/3) temperature dependence. Phys Rev Lett 95(19):195501.  https://doi.org/10.1103/PhysRevLett.95.195501 CrossRefGoogle Scholar
  17. Karihaloo BL, Wang J, Grzybowski M (1996) Doubly periodic arrays of bridged cracks and short fibre-reinforced cementitious composites. J Mech Phys Solids 44(10):1565–1586.  https://doi.org/10.1016/0022-5096(96)00053-1. http://linkinghub.elsevier.com/retrieve/pii/0022509696000531
  18. Khare R, Mielke SL, Paci JT, Zhang S, Ballarini R, Schatz GC, Belytschko T (2007) Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets. Phys Rev B 75(7):075412.  https://doi.org/10.1103/PhysRevB.75.075412 CrossRefGoogle Scholar
  19. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388.  https://doi.org/10.1126/science.1157996. http://www.ncbi.nlm.nih.gov/pubmed/18635798. http://www.sciencemag.org/cgi/doi/10.1126/science.1157996,47749150628
  20. Legoll F, Luskin M, Moeckel R (2007) Non-ergodicity of the NoséHoover thermostatted harmonic oscillator. Arch Ration Mech Anal 184(3):449–463.  https://doi.org/10.1007/s00205-006-0029-1 CrossRefGoogle Scholar
  21. Leguillon D (2002) Strength or toughness? A criterion for crack onset at a notch. Eur J Mech A/Solids 21(1):61–72.  https://doi.org/10.1016/S0997-7538(01)01184-6 CrossRefGoogle Scholar
  22. Liu F, Ming P, Li J (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 76(6):064120.  https://doi.org/10.1103/PhysRevB.76.064120 CrossRefGoogle Scholar
  23. Marder M, Gross S (1994) Origin of crack tip instabilities. J Mech Phys Solids 43(1):1–48.  https://doi.org/10.1016/0022-5096(94)00060-I. http://arxiv.org/abs/chao-dyn/9410009,9410009
  24. Moura MJB, Marder M (2013) Tearing of free-standing graphene. Phys Rev E 88(3):032405.  https://doi.org/10.1103/PhysRevE.88.032405 CrossRefGoogle Scholar
  25. Novozhilov V (1969) On a necessary and sufficient criterion for brittle strength. J Appl Math Mech 33(2):201–210.  https://doi.org/10.1016/0021-8928(69)90025-2. http://linkinghub.elsevier.com/retrieve/pii/0021892869900252
  26. Omeltchenko A, Yu J, Kalia RK, Vashishta P (1997) Crack front propagation and fracture in a graphite sheet: a molecular-dynamics study on parallel computers. Phys Rev Lett 78(11):2148–2151.  https://doi.org/10.1103/PhysRevLett.78.2148 CrossRefGoogle Scholar
  27. Pechenik L, Levine H, Da Kessler (2002) Steady-state mode I cracks in a viscoelastic triangular lattice. J Mech Phys Solids 50(3):583–613.  https://doi.org/10.1016/S0022-5096(01)00061-8. http://arxiv.org/abs/cond-mat/0002314. http://linkinghub.elsevier.com/retrieve/pii/S0022509601000618,0002314
  28. Petrov VA, Orlov AN (1975) Contribution of thermal fluctuations to the scattering and the gauge effect of longevity. Int J Fract 11(5):881–886.  https://doi.org/10.1007/BF00012904 CrossRefGoogle Scholar
  29. Petrov VA, Orlov AN (1976) Statistical kinetics of thermally activated fracture. Int J Fract 12(2):231–238.  https://doi.org/10.1007/BF00036980 CrossRefGoogle Scholar
  30. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19.  https://doi.org/10.1006/jcph.1995.1039. http://linkinghub.elsevier.com/retrieve/pii/S002199918571039X
  31. Ponson L, Bonamy D, Barbier L (2006) Cleaved surface of<math display=“inline”><mrow><mi>i</mi><mtext></mtext><mi mathvariant=“normal”>Al</mi><mi mathvariant=“normal”>Pd</mi><mi mathvariant=“normal”>Mn</mi></mrow></math> quasicrystals: influence of the local temperature elevation at. Phys Rev B 74(18):184205  https://doi.org/10.1103/PhysRevB.74.184205
  32. Regel’ VR, Slutsker AI, Tomashevski ÉE (1972) The kinetic nature of the strength of solids. Sov Phys Uspekhi 15(1):45–65.  https://doi.org/10.1070/PU1972v015n01ABEH004945. http://stacks.iop.org/0038-5670/15/i=1/a=R03?key=crossref.123f17f2adf8d374f849d4f9578b0ef4
  33. Rice JR, Levy N (1969) Local heating by plastic deformation at a crack tip. In: Argon AS (ed) Physics of strength and plasticity. MIT Press, Cambridge, pp 277–293Google Scholar
  34. Schuh C, Hufnagel T, Ramamurty U (2007) Mechanical behavior of amorphous alloys. Acta Mater 55(12):4067–4109.  https://doi.org/10.1016/j.actamat.2007.01.052. http://linkinghub.elsevier.com/retrieve/pii/S135964540700122X
  35. Shenderova OA, Brenner DW, Omeltchenko A, Su X, Yang LH (2000) Atomistic modeling of the fracture of polycrystalline diamond. Phys Rev B 61(6):3877–3888.  https://doi.org/10.1103/PhysRevB.61.3877. http://link.aps.org/doi/10.1103/PhysRevB.61.3877. http://prb.aps.org/abstract/PRB/v61/i6/p3877_1
  36. Slepyan LI (2002) Models and phenomena in fracture mechanics. Foundations of engineering mechanics. Springer, Berlin.  https://doi.org/10.1007/978-3-540-48010-5 CrossRefGoogle Scholar
  37. Slutsker AI (2005) Atomic-level fluctuation mechanism of the fracture of solids (computer simulation studies). Phys Solid State 47(5):801.  https://doi.org/10.1134/1.1924836 CrossRefGoogle Scholar
  38. Thomson R (1986) Physics of fracture. In: Ehrenreich H, Turnbull D (eds) Solid state physics, vol 39. Academic Press, pp 1–129.  https://doi.org/10.1016/S0081-1947(08)60368-9. http://linkinghub.elsevier.com/retrieve/pii/S0081194708603689
  39. Thomson R, Zhou SJ, Carlsson AE, Tewary VK (1992) Lattice imperfections studied by use of lattice Greens functions. Phys Rev B 46(17):10613–10622.  https://doi.org/10.1103/PhysRevB.46.10613 CrossRefGoogle Scholar
  40. Wang G, Chan K, Xu X, Wang W (2008) Instability of crack propagation in brittle bulk metallic glass. Acta Mater 56(19):5845–5860.  https://doi.org/10.1016/j.actamat.2008.08.005. http://linkinghub.elsevier.com/retrieve/pii/S1359645408005636
  41. Wei C, Cho K, Srivastava D (2003) Tensile strength of carbon nanotubes under realistic temperature and strain rate. Phys Rev B 67(11):115407.  https://doi.org/10.1103/PhysRevB.67.115407. http://arxiv.org/abs/cond-mat/0202513
  42. Yazdani H, Hatami K (2015) Failure criterion for graphene in biaxial loading a molecular dynamics study. Model Simul Mater Sci Eng 23(6):065004  https://doi.org/10.1088/0965-0393/23/6/065004. http://stacks.iop.org/0965-0393/23/i=6/a=065004?key=crossref.66817f771850338a194c2b8253b568c9
  43. Zehnder AT, Rosakis AJ (1991) On the temperature distribution at the vicinity of dynamically propagating cracks in 4340 steel. J Mech Phys Solids 39(3):385–415.  https://doi.org/10.1016/0022-5096(91)90019-K. http://linkinghub.elsevier.com/retrieve/pii/002250969190019K
  44. Zhang T, Li X, Kadkhodaei S, Gao H (2012) Flaw insensitive fracture in nanocrystalline graphene. Nano Lett 12(9):4605–4610.  https://doi.org/10.1021/nl301908b CrossRefGoogle Scholar
  45. Zhang T, Li X, Gao H (2015) Fracture of graphene: a review. Int J Fract 196(1–2):1–31.  https://doi.org/10.1007/s10704-015-0039-9 CrossRefGoogle Scholar
  46. Zhu T, Li J, Samanta A, Leach A, Gall K (2008) Temperature and strain-rate dependence of surface dislocation nucleation. Phys Rev Lett 100(2):025502.  https://doi.org/10.1103/PhysRevLett.100.025502 CrossRefGoogle Scholar
  47. Zhurkov SN (1984) Kinetic concept of the strength of solids. Int J Fract 26(4):295–307.  https://doi.org/10.1007/BF00962961 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire Navier, UMR 8205, École des Ponts, IFSTTAR, CNRSUPEMarne-la-ValléeFrance

Personalised recommendations