Advertisement

International Journal of Fracture

, Volume 207, Issue 2, pp 193–210 | Cite as

Enhanced XFEM for crack deflection in multi-material joints

  • N. SteinEmail author
  • S. Dölling
  • K. Chalkiadaki
  • W. Becker
  • P. Weißgraeber
Original Paper

Abstract

In this work, an enhanced eXtended finite element method (XFEM) implementation is outlined. It allows for modeling two-dimensional crack growth including potential crack deflection at significantly tougher constitutents of multi-material continua. At such material interfaces a user-defined crack deflection criterion is utilized that allows for crack deflection parallel to the interface but is also able to model crack growth that again diverges from the interface. The enhanced XFEM implementation is illustrated analyzing crack growth in a plate with two interacting inclusions showing a distinct toughening effect. Moreover, several different adhesive joint design studies are used to validate the model. The results show that the present XFEM implementation allows for an accurate strength and realistic crack pattern prediction in joint designs of complex shape, e.g. with fillets or rounded adherend corners. The given framework is general and could also be applied to the study of fracture processes including crack deflection as e.g. micro-mechanical fracture in fibre-reinforced composites or cracks around inclusions.

Keywords

Adhesive joints Crack patterns Crack deflection Joint strength Extended finite element method 

References

  1. Adams RD, Peppiatt N (1974) Stress analysis of adhesive-bonded lap joints. J Strain Anal Eng Des 9(3):185–196CrossRefGoogle Scholar
  2. Adams RD, Harris JA (1987) The influence of local geometry on the strength of adhesive joints. Int J Adhes Adhes 7(2):69–80CrossRefGoogle Scholar
  3. Adams RD, Atkins RW, Harris JA, Kinloch AJ (1986) Stress analysis and failure properties of carbon-fibre-reinforced-plastic/steel double-lap joints. J Adhes 20(1):29–53CrossRefGoogle Scholar
  4. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620CrossRefGoogle Scholar
  5. Blackman BRK, Kinloch AJ, Paraschi M (2005) The determination of the mode II adhesive fracture resistance, \( G_{IIC}\), of structural adhesive joints: an effective crack length approach. Eng Fract Mech 72(6):877–897CrossRefGoogle Scholar
  6. Blackman BRK, Johnsen BB, Kinloch AJ, Teo WS (2008) The effects of pre-bond moisture on the fracture behaviour of adhesively-bonded composite joints. J Adhes 84(3):256–276CrossRefGoogle Scholar
  7. Bigwood DA, Crocombe AD (1990) Non-linear adhesive bonded joint design analyses. Int J Adhes Adhes 10(1):31–41CrossRefGoogle Scholar
  8. Bush MB (1997) The interaction between a crack and a particle cluster. Int J Fract 88:215–232CrossRefGoogle Scholar
  9. Campilho RDSG, de Moura MFSF, Domingues JJMS (2009) Numerical prediction on the tensile residual strength of repaired CFRP under different geometric changes. Int J Adhes Adhes 29(2):195–205CrossRefGoogle Scholar
  10. Campilho RDSG, Banea MD, Chaves FJP, da Silva LFM (2011a) Extended finite element method for fracture characterization of adhesive joints in pure mode I. Comput Mater Sci 50(4):1543–1549CrossRefGoogle Scholar
  11. Campilho RDSG, Banea MD, Pinto AMG, da Silva LFM, de Jesus AMP (2011b) Strength prediction of single- and double-lap joints by standard and extended finite element modeling. Int J Adhes Adhes 31(5):363–372CrossRefGoogle Scholar
  12. Campilho RDSG, Banea MD, Neto JABP, da Silva LFM (2013a) Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer. Int J Adhes Adhes 44:48–56CrossRefGoogle Scholar
  13. Campilho RDSG, Banea MD, da Silva LFM (2013b) Tensile behaviour of a structural adhesive at high temperatures by the extended finite element method. J Adhes 89(7):529–547CrossRefGoogle Scholar
  14. Chawla BN, Shen YL (2001) Mechanical behavior of particle reinforced metal matrix composites. Adv Eng Mater 3(6):357–370CrossRefGoogle Scholar
  15. Chen Z, Adams RD, da Silva LFM (2011) Fracture toughness of bulk adhesives in mode I and mode III and curing effect. Int J Fract 167(2):221–234CrossRefGoogle Scholar
  16. Crocombe AD, Adams RD (1981) Influence of the spew fillet and other parameters on the stress distribution in the single lap joint. J Adhes 13(2):141–155CrossRefGoogle Scholar
  17. da Silva LFM, Adams RD (2007) Techniques to reduce the peel stresses in adhesive joints with composites. Int J Adhes Adhes 27(3):227–235CrossRefGoogle Scholar
  18. da Silva LFM, Rodrigues TNSS, Figueiredo MAV, de Moura MFSF, Chousal JAG (2006) Effect of adhesive type and thickness on the lap shear strength. J Adhes 82:1091–1115CrossRefGoogle Scholar
  19. da Silva LFM, Campilho RDSG (2012) Advances in numerical modeling of adhesive joints. Springer, HeidelbergCrossRefGoogle Scholar
  20. da Silva LFM, das Neves PJC, Adams RD, Wang A, Spelt JK (2009) Analytical models of adhesively bonded joints—part II: comparative study. Int J Adhes Adhes 29(3):331–341CrossRefGoogle Scholar
  21. da Silva LFM, Öchsner A, Adams RD (2011) Handbook of adhesion technology. Springer, HeidelbergCrossRefGoogle Scholar
  22. Fernandes TAB, Campilho RDSG, Banea MD, da Silva LFM (2015) Adhesive selection for single lap bonded joints: experimentation and advanced techniques for strength prediction. J Adhes 91(10–11):841–862CrossRefGoogle Scholar
  23. Fernlund G, Spelt JK (1991) Failure load prediction of structural adhesive joints: part 1: analytical method. Int J Adhes Adhes 11(4):213–220CrossRefGoogle Scholar
  24. Goglio L, Rossetto M, Dragoni E (2008) Design of adhesive joints based on peak elastic stresses. Int J Adhes Adhes 28(8):427–435CrossRefGoogle Scholar
  25. Gonçalves JPM, de Moura MFSF, de Castro PMST, Marques AT (2000) Interface element including point to surface constraints for three dimensional problems with damage propagation. Eng Comput 17(1):28–47CrossRefGoogle Scholar
  26. Grant LDR, Adams RD, da Silva LFM (2009) Effect of the temperature on the strength of adhesively bonded single lap and T joints for the automotive industry. Int J Adhes Adhes 29(5):535–542CrossRefGoogle Scholar
  27. Hadavinia H, Kawashita L, Kinloch AJ, Moore DR, Williams JG (2006) A numerical analysis of the elastic–plastic peel test. Eng Fract Mech 73(16):2324–2335CrossRefGoogle Scholar
  28. Harris JA, Adams RD (1984) Strength prediction of bonded single lap joints by non-linear finite element methods. Int J Adhes Adhes 4(2):65–78CrossRefGoogle Scholar
  29. Harris JA, Adams RD (1985) An assessment of the impact performance of bonded joints for use in high energy absorbing structures. Proc Inst Mech Eng Part C J Mech Eng Sci 199(2):121–131CrossRefGoogle Scholar
  30. Hell S, Weißgraeber P, Felger J, Becker W (2014) A coupled stress and energy criterion for the assessment of crack initiation in single lap joints: a numerical approach. Eng Fract Mech 117:112–126CrossRefGoogle Scholar
  31. Hildebrand M (1994) Non-linear analysis and optimization of adhesively bonded single lap joints between fibre-reinforced plastics and metals. Int J Adhes Adhes 14(4):261–267CrossRefGoogle Scholar
  32. Lee MJ, Cho TM, Kim WS, Lee BC, Lee JJ (2010) Determination of cohesive parameters for a mixed-mode cohesive zone model. Int J Adhes Adhes 30(5):322–328CrossRefGoogle Scholar
  33. Karachalios EF, Adams RD, da Silva LFM (2013) Single lap joints loaded in tension with high strength steel adherends. Int J Adhes Adhes 43:81–95CrossRefGoogle Scholar
  34. Kitey R, Phan AV, Tippur HV, Kaplan T (2006) Modeling of crack growth through particulate clusters in brittle matrix by symmetric-Galerkin boundary element method. Int J Fract 141(1–2):11–25CrossRefGoogle Scholar
  35. Leguillon D (2002) Strength or toughness? A criterion for crack onset at a notch. Eur J Mech A Solids 21(1):61–72CrossRefGoogle Scholar
  36. Liljedahl CDM, Crocombe AD, Wahab MA, Ashcroft IA (2006) Damage modeling of adhesively bonded joints. Int J Fract 141(1–2):147–161CrossRefGoogle Scholar
  37. Melenk J, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139(1):289–314CrossRefGoogle Scholar
  38. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150CrossRefGoogle Scholar
  39. Moradi A, Carrère N, Leguillon D, Martin E, Cognard JY (2013) Strength prediction of bonded assemblies using a coupled criterion under elastic assumptions: effect of material and geometrical parameters. Int J Adhes Adhes 47:73–82CrossRefGoogle Scholar
  40. Mubashar A, Ashcroft IA, Critchlow GW, Crocombe AD (2009) Modelling moisture absorption–desorption effects in adhesive joints. Int J Adhes Adhes 29(8):751–760CrossRefGoogle Scholar
  41. Mubashar A, Ashcroft IA, Crocombe AD (2014) Modelling damage and failure in adhesive joints using a combined XFEM-cohesive element methodology. J Adhes 90:682–697CrossRefGoogle Scholar
  42. Osher S, Sethian JA (1998) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(1):12–49CrossRefGoogle Scholar
  43. Remmers JJC, de Borst R, Needleman A (2008) The simulation of dynamic crack propagation using the cohesive segments method. J Mech Phys Solids 56(1):70–92CrossRefGoogle Scholar
  44. Shahin K, Taheri F (2008) The strain energy release rates in adhesively bonded balanced and unbalanced specimens and lap joints. Int J Solids Struct 45(25):6284–6300CrossRefGoogle Scholar
  45. Song JH, Areias PMA, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng 67(6):868–893CrossRefGoogle Scholar
  46. Stein N, Weißgraeber P, Becker W (2015) A model for brittle failure in adhesive lap joints of arbitrary joint configuration. Compos Struct 133:707–718CrossRefGoogle Scholar
  47. Stein N, Weißgraeber P, Becker W (2016) Brittle failure in adhesive lap joints—a general finite fracture mechanics approach. Proced Struct Integr 2:1967–1974CrossRefGoogle Scholar
  48. Stuparu FA, Apostol DA, Constantinescu DM, Picu CR, Sandu M, Sorohan S (2016a) Cohesive and XFEM evaluation of adhesive failure for dissimilar single-lap joints. Proced Struct Integr 2:316–325CrossRefGoogle Scholar
  49. Stuparu FA, Constantinescu DM, Apostol DA, Sandu M (2016b) A combined cohesive elements—XFEM approach for analyzing crack propagation in bonded joints. J Adhes 92(7–9):535–552CrossRefGoogle Scholar
  50. Sukumar N, Prévost JH (2003) Modeling quasi-static crack growth with the extended finite element method. Part I: computer implementation. Int J Solids Struct 40(26):7513–7537CrossRefGoogle Scholar
  51. Sukumar N, Huang ZY, Prévost JH, Suo Z (2004) Partition of unity enrichment for bimaterial interface cracks. Int J Numer Methods Eng 59(8):1075–1102CrossRefGoogle Scholar
  52. Tsai M, Morton J (1995) The effect of a spew fillet on adhesive stress distributions in laminated composite single-lap joints. Compos Struct 32(1–4):123–131CrossRefGoogle Scholar
  53. Turon A, Dàvila CG, Camanho PP, Costa J (2007) An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng Fract Mech 74(10):1665–1682CrossRefGoogle Scholar
  54. Wang Z, Ma L, Wu L, Yu H (2012) Numerical simulation of crack growth in brittle matrix of particle reinforced composites using the XFEM technique. Acta Mech Solida Sin 25(1):9–21CrossRefGoogle Scholar
  55. Weißgraeber P, Leguillon D, Becker W (2016) A review of finite fracture mechanics: crack initiation at singular and non-singular stress raisers. Arch Appl Mech 86(1–2):375–401CrossRefGoogle Scholar
  56. Xu B (2010) Fracture mechanisms and failure criteria of adhesive joints and toughened epoxy adhesives. Dissertation, Queen Mary College, LondonGoogle Scholar
  57. Zhao X, Adams RD, da Silva LFM (2011a) Single lap joints with rounded adherend corners: stress and strain analysis. J Adhes Sci Technol 25(8):819–836Google Scholar
  58. Zhao X, Adams RD, da Silva LFM (2011b) Single lap joints with rounded adherend corners: experimental results and strength prediction. J Adhes Sci Technol 25(8):837–856Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • N. Stein
    • 1
    Email author
  • S. Dölling
    • 1
  • K. Chalkiadaki
    • 2
  • W. Becker
    • 1
  • P. Weißgraeber
    • 3
  1. 1.Fachgebiet StrukturmechanikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Automotive ElectronicsRobert Bosch GmbHSchwieberdingenGermany
  3. 3.Corporate Research and Advance EngineeringRobert Bosch GmbHRenningenGermany

Personalised recommendations