Advertisement

Modelling the mechanical structure of extreme shear ruptures with friction approaching zero generated in brittle materials

Abstract

Experiments on frictional stick-slip instability in brittle materials and natural observations show that friction falls towards zero in the head of shear ruptures propagating with extreme velocities (up to supershear levels). Although essential for understanding earthquakes, fracture mechanics and tribology the question of what physical processes determine how weakening occurs is still unclear. Here, using a mathematical model, we demonstrate that the extremely low friction can be caused by a fan-like fault structure formed on the basis of a tensile-cracking process observed in all extreme ruptures. The mathematical model visualises and describes the fan-structure as a mechanical system during rupture propagation. It explains some features observed in laboratory experiments.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Ben-David O, Rubinstein SM, Fineberg J (2010) Slip-stick and the evolution of frictional strength. Nature 463:76–79. doi:10.1038/nature08676

  2. Bizzarri A (2009) Can flash heating of asperity contacts prevent melting? Geophys Res Lett 36(11):L11,304. doi:10.1029/2009GL037335

  3. Bowden FP, Tabor D (2001) The friction and lubrication of solids. Oxford University Press, Oxford

  4. Di Toro G, Goldsby DL, Tullis TE (2004) Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature 427:436–439. doi:10.1038/nature02249

  5. Ghaffari HO, Thompson BD, Young RP (2014) Complex networks and waveforms from acoustic emissions in laboratory earthquakes. Nonlinear Process Geophys 21:763–775. doi:10.5194/npg-21-763-2014

  6. Griffith WA, Rosakis A, Pollard DD, Ko CW (2009) Dynamic rupture experiments elucidate tensile crack development during propagating earthquake ruptures. Geology 37(9):795–798. doi:10.1130/G30064A.1

  7. Heaton TH (1990) Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys Earth Planet Inter 64(1):1–20. doi:10.1016/0031-9201(90)90002-F

  8. Horii H, Nemat-Nasser S (1985) Compression-induced microcrack growth in brittle solids: axial splitting and shear failure. J Geophys Res 90(B4):3105–3125. doi:10.1029/JB090iB04p03105

  9. King GCP, Sammis CG (1992) The mechanisms of finite brittle strain. Pure Appl Geophys 138(4):611–640. doi:10.1007/BF00876341

  10. Lei X, Kusunose K, Rao MVMS, Nishizawa O, Satoh T (2000) Quasi-static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring. J Geophys Res 105(B3):6127–6139. doi:10.1029/1999JB900385

  11. Lu X, Lapusta N, Rosakis AJ (2007) Pulse-like and crack-like ruptures in experiments mimicking crustal earthquakes. Proc Natl Acad Sci USA 104(48):18,931–18,936. doi:10.1073/pnas.0704268104

  12. Lykotrafitis G, Rosakis AJ, Ravichandran G (2006) Self-healing pulse-like shear ruptures in the laboratory. Science 313(5794):1765–1768. doi:10.1126/science.1128359

  13. Magloughlin JF, Spray JG (1992) Frictional melting processes and products in geological materials: introduction and discussion. Tectonophysics 204(3–4):197–206. doi:10.1016/0040-1951(92)90307-R

  14. Melosh HJ (1979) Acoustic fluidization: a new geologic process? J Geophys Res 84(B13):7513–7520. doi:10.1029/JB084iB13p07513

  15. Ohnaka M, Shen L (1999) Scaling of the shear rupture process from nucleation to dynamic propagation: implications of geometric irregularity of the rupturing surfaces. J Geophys Res 104(B1):817–844. doi:10.1029/1998JB900007

  16. Olsen KB, Madariaga R, Archuleta RJ (1997) Three-dimensional dynamic simulation of the 1992 Landers earthquake. Science 278(5339):834–838. doi:10.1126/science.278.5339.834

  17. Ortlepp WD (1997) Rock fracture and rockbursts: an illustrative study, vol M9. Monograph series M9. South African Institute of Mining and Metallurgy, Johannesburg

  18. Peng S, Johnson AM (1972) Crack growth and faulting in cylindrical specimens of Chelmsford granite. Int J Rock Mech Min Sci Geomech Abstr 9(1):37–86. doi:10.1016/0148-9062(72)90050-2

  19. Reches Z, Lockner DA (1994) Nucleation and growth of faults in brittle rocks. J Geophys Res 99(B9):18,159–18,173. doi:10.1029/94JB00115

  20. Rice JR (2006) Heating and weakening of faults during earthquake slip. J Geophys Res 111(B5):B05,311. doi:10.1029/2005JB004006

  21. Rosakis AJ, Samudrala O, Coker D (1999) Cracks faster than the shear wave speed. Science 284(5418):1337–1340. doi:10.1126/science.284.5418.1337

  22. Rubinstein SM, Cohen G, Fineberg J (2004) Detachment fronts and the onset of dynamic friction. Nature 430:1005–1009. doi:10.1038/nature02830

  23. Samudrala O, Huang Y, Rosakis AJ (2002) Subsonic and intersonic shear rupture of weak planes with a velocity weakening cohesive zone. J Geophys Res 107(B8):2170. doi:10.1029/2001JB000460

  24. Scholz CH (2002) The mechanics of earthquakes and faulting. Cambridge University Press, Cambridge

  25. Tarasov BG (2014) Hitherto unknown shear rupture mechanism as a source of instability in intact hard rocks at highly confined compression. Tectonophysics 621:69–84. doi:10.1016/j.tecto.2014.02.004

  26. Tarasov BG (2016) Shear fractures of extreme dynamics. Rock Mech Rock Eng 49(10):3999–4021. doi:10.1007/s00603-016-1069-y

  27. Tarasov BG (2017) Shear ruptures of extreme dynamics in laboratory and natural conditions. In: Wasseloo J (ed) Eighth international conference on deep and high stress mining (deep mining 2017), Keynote address, ISBN 978-0-9924810-6-3. Australian Centre for Geomechanics, Australia

  28. Tarasov BG, Randolph MF (2016) Improved concept of lithospheric strength and earthquake activity at shallow depths based upon the fan-head dynamic shear rupture mechanism. Tectonophysics 667:124–143. doi:10.1016/j.tecto.2015.11.016

  29. Wen YY, Ma KF, Song TRA, Mooney WD (2009) Validation of the rupture properties of the 2001 Kunlun, China (Ms = 8.1), earthquake from seismological and geological observations. Geophys J Int 177(2):555–570. doi:10.1111/j.1365-246X.2008.04063.x

  30. Xia K, Rosakis AJ, Kanamori H (2004) Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition. Science 303(5665):1859–1861. doi:10.1126/science.1094022

Download references

Acknowledgements

The authors acknowledge the support provided by the Centre for Offshore Foundation Systems (COFS) at the University of Western Australia.

Author information

Correspondence to Boris G. Tarasov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 4265 KB)

Supplementary material 1 (avi 4265 KB)

Supplementary material 2 (avi 5554 KB)

Supplementary material 3 (avi 2459 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tarasov, B.G., Guzev, M.A., Sadovskii, V.M. et al. Modelling the mechanical structure of extreme shear ruptures with friction approaching zero generated in brittle materials. Int J Fract 207, 87–97 (2017) doi:10.1007/s10704-017-0223-1

Download citation

Keywords

  • Structure of shear rupture
  • Shear rupture mechanism
  • Shear ruptures of extreme dynamics
  • Low friction
  • Mathematical modelling

Mathematics Subject Classification

  • 86A15
  • 70K70
  • 65L05