Advertisement

International Journal of Fracture

, Volume 204, Issue 1, pp 79–100 | Cite as

Dynamic crack propagation with a variational phase-field model: limiting speed, crack branching and velocity-toughening mechanisms

  • Jérémy BleyerEmail author
  • Clément Roux-Langlois
  • Jean-François Molinari
Original Paper

Abstract

We address the simulation of dynamic crack propagation in brittle materials using a regularized phase-field description, which can also be interpreted as a damage-gradient model. Benefiting from a variational framework, the dynamic evolution of the mechanical fields are obtained as a succession of energy minimizations. We investigate the capacity of such a simple model to reproduce specific experimental features of dynamic in-plane fracture. These include the crack branching phenomenon as well as the existence of a limiting crack velocity below the Rayleigh wave speed for mode I propagation. Numerical results show that, when a crack accelerates, the damaged band tends to widen in a direction perpendicular to the propagation direction, before forming two distinct macroscopic branches. This transition from a single crack propagation to a branched configuration is described by a well-defined master-curve of the apparent fracture energy \(\varGamma \) as an increasing function of the crack velocity. This \(\varGamma (v)\) relationship can be associated, from a macroscopic point of view, with the well-known velocity-toughening mechanism. These results also support the existence of a critical value of the energy release rate associated with branching: a critical value of approximately 2\(G_c\) is observed i.e. the fracture energy contribution of two crack tips. Finally, our work demonstrates the efficiency of the phase-field approach to simulate crack propagation dynamics interacting with heterogeneities, revealing the complex interplay between heterogeneity patterns and branching mechanisms.

Keywords

Dynamic fracture Crack branching Brittle materials Phase-field model Damage-gradient model 

Notes

Acknowledgments

The authors would like to acknowledge Corrado Maurini and Li Tianyi for sharing FEniCS-based implementation of damage-gradient models.

Supplementary material

Supplementary material 1 (mov 480 KB)

Supplementary material 2 (mov 348 KB)

Supplementary material 3 (mov 377 KB)

Supplementary material 4 (mov 349 KB)

Supplementary material 5 (mov 368 KB)

References

  1. Ambati M, Gerasimov T, De Lorenzis L (2015) Phase-field modeling of ductile fracture. Comput Mech 55(5):1017–1040CrossRefGoogle Scholar
  2. Ambrosio L, Tortorelli VM (1990) Approximation of functional depending on jumps by elliptic functional via t-convergence. Commun Pure Appl Math 43(8):999–1036CrossRefGoogle Scholar
  3. Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57(8):1209–1229CrossRefGoogle Scholar
  4. Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Rupp K, Smith BF, Zampini S, Zhang H, Zhang H (2016) PETSc web page. http://www.mcs.anl.gov/petsc
  5. Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–129CrossRefGoogle Scholar
  6. Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Methods Eng 58(12):1873–1905CrossRefGoogle Scholar
  7. Bobaru F, Zhang G (2015) Why do cracks branch? A peridynamic investigation of dynamic brittle fracture. Int J Fracture 196(1–2):59–98CrossRefGoogle Scholar
  8. Borden MJ, Verhoosel CV, Scott MA, Hughes TJ, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77–95CrossRefGoogle Scholar
  9. Bouchbinder E, Goldman T, Fineberg J (2014) The dynamics of rapid fracture: instabilities, nonlinearities and length scales. Rep Prog Phys 77(4):046,501CrossRefGoogle Scholar
  10. Bouchbinder E, Mathiesen J, Procaccia I (2005) Branching instabilities in rapid fracture: dynamics and geometry. Phys Rev E 71(5):056,118CrossRefGoogle Scholar
  11. Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797–826CrossRefGoogle Scholar
  12. Bourdin B, Francfort GA, Marigo JJ (2008) The variational approach to fracture. J Elast 91(1–3):5–148CrossRefGoogle Scholar
  13. Bourdin B, Larsen CJ, Richardson CL (2011) A time-discrete model for dynamic fracture based on crack regularization. Int J Fracture 168(2):133–143CrossRefGoogle Scholar
  14. Broberg K (1996) How fast can a crack go? Mater Sci 32(1):80–86CrossRefGoogle Scholar
  15. Cazes F, Moës N (2015) Comparison of a phase-field model and of a thick level set model for brittle and quasi-brittle fracture. Int J Numer Methods Eng 103(2):114–143CrossRefGoogle Scholar
  16. Dalmas D, Guerra C, Scheibert J, Bonamy D (2013) Damage mechanisms in the dynamic fracture of nominally brittle polymers. Int J Fracture 184(1):93–111CrossRefGoogle Scholar
  17. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104CrossRefGoogle Scholar
  18. Falk ML, Needleman A, Rice JR (2001) A critical evaluation of cohesive zone models of dynamic fracture. J Phys IV 11(PR5):Pr5–Pr43Google Scholar
  19. Fineberg J, Marder M (1999) Instability in dynamic fracture. Phys Rep 313(1):1–108CrossRefGoogle Scholar
  20. Fisher DS, Dahmen K, Ramanathan S, Ben-Zion Y (1997) Statistics of earthquakes in simple models of heterogeneous faults. Phys Rev Lett 78(25):4885CrossRefGoogle Scholar
  21. Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342CrossRefGoogle Scholar
  22. Freund LB (1998) Dynamic fracture mechanics. Cambridge University Press, CambridgeGoogle Scholar
  23. Gao H (1993) Surface roughening and branching instabilities in dynamic fracture. J Mech Phys Solids 41(3):457–486CrossRefGoogle Scholar
  24. Goldman T, Cohen G, Fineberg J (2015) Origin of the microbranching instability in rapid cracks. Phys Rev Lett 114(5):054,301CrossRefGoogle Scholar
  25. Guerra C, Scheibert J, Bonamy D, Dalmas D (2012) Understanding fast macroscale fracture from microcrack post mortem patterns. Proc Natl Acad Sci 109(2):390–394CrossRefGoogle Scholar
  26. Guerra Amaro, CM (2009) Dynamic fracture in brittle amorphous materials : dissipation mechanisms and dynamically-induced microcracking in PMMA. Theses, Ecole PolytechniqueGoogle Scholar
  27. Henry H (2008) Study of the branching instability using a phase field model of inplane crack propagation. EPL (Europhys Lett) 83(1):160,04CrossRefGoogle Scholar
  28. Henry H, Adda-Bedia M (2013) Fractographic aspects of crack branching instability using a phase-field model. Phys Rev E 88(6):060,401CrossRefGoogle Scholar
  29. Hofacker M, Miehe C (2012) Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation. Int J Fracture 178(1–2):113–129CrossRefGoogle Scholar
  30. Hofacker M, Miehe C (2013) A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns. Int J Numer Methods Eng 93(3):276–301CrossRefGoogle Scholar
  31. Jirasek M (1998) Nonlocal models for damage and fracture: comparison of approaches. Int J Solids Struct 35(31):4133–4145CrossRefGoogle Scholar
  32. Johnson E (1992) Process region changes for rapidly propagating cracks. Int J Fracture 55(1):47–63CrossRefGoogle Scholar
  33. Karma A, Kessler DA, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 87(4):045,501CrossRefGoogle Scholar
  34. Karma A, Lobkovsky AE (2004) Unsteady crack motion and branching in a phase-field model of brittle fracture. Phys Rev Lett 92(24):245,510CrossRefGoogle Scholar
  35. Lapusta N, Liu Y (2009) Three-dimensional boundary integral modeling of spontaneous earthquake sequences and aseismic slip. J Geophys Res Solid Earth 114(B9). doi: 10.1029/2008JB005934
  36. Li T, Marigo JJ, Guilbaud D, Potapov S (2015) Variational approach to dynamic brittle fracture via gradient damage models. In: Applied mechanics and materials, vol. 784. Trans Tech Publ, pp 334–341Google Scholar
  37. Li T, Marigo JJ, Guilbaud D, Potapov S (2016) Gradient damage modeling of brittle fracture in an explicit dynamics context. Int J Numer Methods Eng (in press), Nme.5262Google Scholar
  38. Li T, Maurini C (2015) FEniCS (dynamic) gradient damage. https://bitbucket.org/litianyi/dynamic-gradient-damage
  39. Livne A, Bouchbinder E, Fineberg J (2008) Breakdown of linear elastic fracture mechanics near the tip of a rapid crack. Phys Rev Lett 101(26):264,301CrossRefGoogle Scholar
  40. Logg A, Mardal KA, Wells G (2012) Automated solution of differential equations by the finite element method: the FEniCS book, vol 84. Springer, New YorkGoogle Scholar
  41. Lorentz E, Cuvilliez S, Kazymyrenko K (2012) Modelling large crack propagation: from gradient damage to cohesive zone models. Int J Fracture 178(1–2):85–95CrossRefGoogle Scholar
  42. Marder M (1991) New dynamical equation for cracks. Phys Rev Lett 66(19):2484CrossRefGoogle Scholar
  43. May S, Vignollet J, De Borst R (2015) A numerical assessment of phase-field models for brittle and cohesive fracture: \(\varGamma \)-convergence and stress oscillations. Eur J Mech-A/Solids 52:72–84CrossRefGoogle Scholar
  44. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45):2765–2778CrossRefGoogle Scholar
  45. Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83(10):1273–1311CrossRefGoogle Scholar
  46. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150CrossRefGoogle Scholar
  47. Moës N, Stolz C, Bernard PE, Chevaugeon N (2011) A level set based model for damage growth: the thick level set approach. Int J Numer Methods Eng 86(3):358–380CrossRefGoogle Scholar
  48. Murali P, Guo T, Zhang Y, Narasimhan R, Li Y, Gao H (2011) Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses. Phys Rev Lett 107(21):215,501CrossRefGoogle Scholar
  49. Pandolfi A, Ortiz M (2012) An eigenerosion approach to brittle fracture. Int J Numer Methods Eng 92(8):694–714CrossRefGoogle Scholar
  50. Patinet S, Vandembroucq D, Roux S (2013) Quantitative prediction of effective toughness at random heterogeneous interfaces. Phys Rev Lett 110(16):165,507CrossRefGoogle Scholar
  51. Peerlings R, De Borst R, Brekelmans W, Geers M (1998) Gradient-enhanced damage modelling of concrete fracture. Mech Cohesive-Frictional Mater 3(4):323–342CrossRefGoogle Scholar
  52. Pham K, Amor H, Marigo JJ, Maurini C (2011) Gradient damage models and their use to approximate brittle fracture. Int J Damage Mech 20(4):618–652CrossRefGoogle Scholar
  53. Pijaudier-Cabot G, Bazant ZP (1987) Nonlocal damage theory. J Eng Mech 113(10):1512–1533CrossRefGoogle Scholar
  54. Ravi-Chandar K (2004) Dynamic fracture. Elsevier, AmsterdamGoogle Scholar
  55. Ravi-Chandar K, Knauss W (1984) An experimental investigation into dynamic fracture II microstrutural aspects. Int J Fracture 26(1):65–80CrossRefGoogle Scholar
  56. Ravi-Chandar K, Knauss W (1984) An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching. Int J Fracture 26(2):141–154CrossRefGoogle Scholar
  57. Ravi-Chandar K, Yang B (1997) On the role of microcracks in the dynamic fracture of brittle materials. J Mech Phys Solids 45(4):535–563CrossRefGoogle Scholar
  58. Rice JR (2001) Physical aspects of fracture, chap. Some studies of crack dynamics. Springer, DordrechtGoogle Scholar
  59. Seelig T, Gross D (1999) On the interaction and branching of fast running cracksa numerical investigation. J Mech Phys Solids 47(4):935–952CrossRefGoogle Scholar
  60. Sharon E, Gross SP, Fineberg J (1996) Energy dissipation in dynamic fracture. Phys Rev Lett 76(12):2117CrossRefGoogle Scholar
  61. Sicsic P, Marigo JJ (2013) From gradient damage laws to Griffiths theory of crack propagation. J Elast 113(1):55–74CrossRefGoogle Scholar
  62. Stolarska M, Chopp D, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng 51(8):943–960CrossRefGoogle Scholar
  63. Stroh AN (1957) A theory of the fracture of metals. Adv Phys 6(24):418–465CrossRefGoogle Scholar
  64. Vasoya M, Unni AB, Leblond JB, Lazarus V, Ponson L (2016) Finite size and geometrical non-linear effects during crack pinning by heterogeneities: an analytical and experimental study. J Mech Phys Solids 89:211–230CrossRefGoogle Scholar
  65. Verhoosel CV, Borst R (2013) A phase-field model for cohesive fracture. Int J Numer Methods Eng 96(1):43–62CrossRefGoogle Scholar
  66. Washabaugh PD, Knauss W (1994) A reconciliation of dynamic crack velocity and Rayleigh wave speed in isotropic brittle solids. Int J Fracture 65(2):97–114Google Scholar
  67. Wolff C, Richart N, Molinari JF (2015) A non-local continuum damage approach to model dynamic crack branching. Int J Numer Methods Eng 101(12):933–949CrossRefGoogle Scholar
  68. Xu D, Liu Z, Liu X, Zeng Q, Zhuang Z (2014) Modeling of dynamic crack branching by enhanced extended finite element method. Comput Mech 54(2):489–502CrossRefGoogle Scholar
  69. Xu XP, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397–1434CrossRefGoogle Scholar
  70. Yoffe EH (1951) The moving Griffith crack. Lond Edinb Dublin Philos Mag J Sci 42(330):739–750CrossRefGoogle Scholar
  71. Yu C, Pandolfi A, Ortiz M, Coker D, Rosakis A (2002) Three-dimensional modeling of intersonic shear-crack growth in asymmetrically loaded unidirectional composite plates. Int J Solids Struct 39(25):6135–6157CrossRefGoogle Scholar
  72. Zhou F (1996) Study on the macroscopic behavior and the microscopic process of dynamic crack propagation. Ph.D. thesis, PhD dissertation. The University of Tokyo, TokyoGoogle Scholar
  73. Zhou F, Molinari JF, Shioya T (2005) A rate-dependent cohesive model for simulating dynamic crack propagation in brittle materials. Eng Fracture Mech 72(9):1383–1410CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Civil Engineering, Department of Materials ScienceEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Mechanics and Glasses Department, Institute of physics of RennesUMR UR1-CNRS 6251, University of Rennes 1Rennes CedexFrance

Personalised recommendations