International Journal of Fracture

, Volume 201, Issue 1, pp 29–80 | Cite as

Ductile failure modeling

  • Ahmed Amine Benzerga
  • Jean-Baptiste Leblond
  • Alan Needleman
  • Viggo Tvergaard
Special Invited Article Celebrating IJF at 50


Ductile fracture of structural metals occurs mainly by the nucleation, growth and coalescence of voids. Here an overview of continuum models for this type of failure is given. The most widely used current framework is described and its limitations discussed. Much work has focused on extending void growth models to account for non-spherical initial void shapes and for shape changes during growth. This includes cases of very low stress triaxiality, where the voids can close up to micro-cracks during the failure process. The void growth models have also been extended to consider the effect of plastic anisotropy, or the influence of nonlocal effects that bring a material size scale into the models. Often the voids are not present in the material from the beginning, and realistic nucleation models are important. The final failure process by coalescence of neighboring voids is an issue that has been given much attention recently. At ductile fracture, localization of plastic flow is often important, leading to failure by a void-sheet mechanism. Various applications are presented to illustrate the models, including welded specimens, shear tests on butterfly specimens, and analyses of crack growth.


Ductile failure Constitutive modeling Micromechanics Porosity evolution 



AAB acknowledges the support of the National Science Foundation under Grant Number CMMI-1405226. AN is grateful for the support provided by the National Science Foundation under Grant Number CMMI-1200203.


  1. Agoras M, Ponte Castañeda P (2013) Iterated linear comparison bounds for viscoplastic porous materials with ellipsoidal microstructures. J Mech Phys Solids 61:701–725CrossRefGoogle Scholar
  2. Agoras M, Ponte Castañeda P (2014) Anisotropic finite-strain models for porous viscoplastic materials with microstructure evolution. Int J Solids Struct 51:981–1002CrossRefGoogle Scholar
  3. Argon AS, Im J, Safoglu R (1975) Cavity formation from inclusions in ductile fracture. Met Trans A 6A:825–837CrossRefGoogle Scholar
  4. Arriaga M, McAuliffe C, Waisman H (2015) Onset of shear band localization by a local generalized eigenvalue analysis. Comput Methods Appl Mech Eng 289:179–208CrossRefGoogle Scholar
  5. Babout L, Bréchet Y, Maire E, Fougères R (2004) On the competition between particle fracture and particle decohesion in metal matrix composites. Acta Mater 52:4517–4525CrossRefGoogle Scholar
  6. Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46:81–98CrossRefGoogle Scholar
  7. Barsoum I, Faleskog J (2007a) Rupture mechanisms in combined tension and shear-experiments. Int J Solids Struct 44:1768–1786CrossRefGoogle Scholar
  8. Barsoum I, Faleskog J (2007b) Rupture mechanisms in combined tension and shear-micromechanics. Int J Solids Struct 44:5481–5498CrossRefGoogle Scholar
  9. Barsoum I, Faleskog J (2011) Micromechanical analysis on the influence of the lode parameter on void growth and coalescence. Int J Solids Struct 48:925–938CrossRefGoogle Scholar
  10. Beachem CD (1963) An electron fractographic study of the influence of plastic strain conditions upon ductile rupture processes in metals. Trans ASM 56:318–326Google Scholar
  11. Becker R, Needleman A (1986) Effect of yield surface curvature on necking and failure in porous solids. J Appl Mech 53:491–499CrossRefGoogle Scholar
  12. Benallal A, Desmorat R, Fournage M (2014) An assessment of the role of the third stress invariant in the Gurson approach for ductile fracture. Eur J Mech A/Solids 47:400–414CrossRefGoogle Scholar
  13. Benzerga AA (2000) Rupture ductile des tôles anisotropes. PhD thesis, Ecole Nationale Supérieure des Mines de ParisGoogle Scholar
  14. Benzerga AA (2002) Micromechanics of coalescence in ductile fracture. J Mech Phys Solids 50:1331–1362CrossRefGoogle Scholar
  15. Benzerga AA, Besson J (2001) Plastic potentials for anisotropic porous solids. Eur J Mech A/Solids 20:397–434CrossRefGoogle Scholar
  16. Benzerga AA, Leblond JB (2010) Ductile fracture by void growth to coalescence. Adv Appl Mech 44:169–305CrossRefGoogle Scholar
  17. Benzerga AA, Leblond JB (2014) Effective yield criterion accounting for microvoid coalescence. J Appl Mech 81(3):031009CrossRefGoogle Scholar
  18. Benzerga AA, Besson J, Pineau A (1999) Coalescence-controlled anisotropic ductile fracture. J Eng Mat Tech 121:221–229CrossRefGoogle Scholar
  19. Benzerga AA, Besson J, Batisse R, Pineau A (2002a) Synergistic effects of plastic anisotropy and void coalescence on fracture mode in plane strain. Modell Simul Mater Sci Eng 10:73–102CrossRefGoogle Scholar
  20. Benzerga AA, Tvergaard V, Needleman A (2002b) Size effects in the Charpy V-notch test. Int J Frac 116:275–296CrossRefGoogle Scholar
  21. Benzerga AA, Besson J, Pineau A (2004) Anisotropic ductile fracture. Part II: theory. Acta Mater 52:4639–4650CrossRefGoogle Scholar
  22. Beremin FM, Pineau A, Mudry F, Devaux J, DEscatha Y, Ledermann P (1981a) Experimental and numerical study of the different stages in ductile rupture: application to crack initiation and stable crack growth. In: Nemat-Nasser S (ed) Three-dimensional constitutive relations of damage and fracture. Pergamon Press, North Holland, pp 157–172Google Scholar
  23. Beremin FM, Pineau A, Mudry F, Devaux J, DEscatha Y, Ledermann P (1981b) Cavity formation from inclusions in ductile fracture. Met Trans A 12A:723–731CrossRefGoogle Scholar
  24. Bergheau JM, Leblond JB, Perrin G (2014) A new numerical implementation of a second-gradient model for plastic porous solids, with an application to the simulation of ductile rupture tests. Comput Methods Appl Mech Eng 268:105–125CrossRefGoogle Scholar
  25. Besson J (2010) Continuum models of ductile fracture: a review. Int J Damage Mech 19:3–52CrossRefGoogle Scholar
  26. Besson J, McCowan CN, Drexler ES (2013) Modeling flat to slant fracture transition using the computational cell methodology. Eng Frac Mech 104:80–95CrossRefGoogle Scholar
  27. Bishop RF, Hill R, Mott NF (1945) The theory of indentation and hardness tests. Proc Phys Soc Lond 57:147–159CrossRefGoogle Scholar
  28. Bouchaud E, Lapasset G, Planes J (1990) Fractal dimension of fractured surfaces: a universal value? Eur Phys Lett 13:73–79CrossRefGoogle Scholar
  29. Budiansky B, Hutchinson JW, Slutsky S (1982) Void growth and collapse in viscous solids. In: Hopkins HG, Sowell MJ (eds) Mechanics of Solids, The Rodney Hill 60th Anniversary Volume, Pergamon Press, North Holland, pp 13–45Google Scholar
  30. Cazacu O, Revil-Baudard B, Chandola N, Kondo D (2014) New analytical criterion for porous solids with Tresca matrix under axisymmetric loadings. Int J Solids Struct 51:861–874CrossRefGoogle Scholar
  31. Chu C, Needleman A (1980) Void nucleation effects in biaxially stretched sheets. J Eng Mat Tech 102:249–256CrossRefGoogle Scholar
  32. Cox TB, Low JR (1974) An investigation of the plastic fracture of AISI 4340 and 18 nickel-200 grade maraging steels. Met Trans 5:1457–1470CrossRefGoogle Scholar
  33. Dahl J, Nielsen KL, Tvergaard V (2012) Effect of contact conditions on void coalescence at low stress triaxiality shearing. J Appl Mech 79(021):003Google Scholar
  34. Danas K, Ponte Castañeda P (2009a) A finite-strain model for anisotropic viscoplastic porous media: I-theory. Eur J Mech A/Solids 28:387–401CrossRefGoogle Scholar
  35. Danas K, Ponte Castañeda P (2009b) A finite-strain model for anisotropic viscoplastic porous media: II-applications. Eur J Mech A/Solids 28:402–416CrossRefGoogle Scholar
  36. Danas K, Ponte Castañeda P (2012) Influence of the Lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials. Int J Solids Struct 49:1325–1342CrossRefGoogle Scholar
  37. Dunand M, Mohr D (2011a) On the predictive capabilities of the shear modified gurson and the modified Mohr–Coulomb fracture models over a wide range of stress triaxialities and lode angles. J Mech Phys Solids 59:1374–1394CrossRefGoogle Scholar
  38. Dunand M, Mohr D (2011b) Optimized butterfly specimen for the fracture testing of sheet materials under combined normal and shear loading. Eng Frac Mech 78:2919–2934CrossRefGoogle Scholar
  39. Enakoutsa K, Leblond JB (2009) Numerical implementation and assessment of the GLPD micromorphic model of ductile rupture. Eur J Mech A/Solids 28:445–460CrossRefGoogle Scholar
  40. Fleck NA, Hutchinson JW, Tvergaard V (1989) Softening by void nucleation and growth in tension and shear. J Mech Phys Solids 37:515–540CrossRefGoogle Scholar
  41. François D, Pineau A (2002) From Charpy to present impact testing. Elsevier, OxfordGoogle Scholar
  42. Gao X, Shih CF, Tvergaard V, Needleman A (1996) Constraint effects on the ductile–brittle transition in small scale yielding. J Mech Phys Solids 44:1255–1282CrossRefGoogle Scholar
  43. Garajeu M, Michel JC, Suquet P (2000) A micromechanical approach of damage in viscoplastic materials by evolution in size, shape and distribution of voids. Comput Methods Appl Mech Eng 183:223–246CrossRefGoogle Scholar
  44. Garrison WM, Moody NR (1987) Ductile fracture. J Phys Chem Solids 48:1035–1074CrossRefGoogle Scholar
  45. Gologanu M (1997) Etude de quelques problèmes de rupture ductile des métaux. PhD thesis, Université Paris 6Google Scholar
  46. Gologanu M, Leblond JB, Devaux J (1993) Approximate models for ductile metals containing non-spherical voids—case of axisymmetric prolate ellipsoidal cavities. J Mech Phys Solids 41:1723–1754CrossRefGoogle Scholar
  47. Gologanu M, Leblond JB, Devaux J (1994) Approximate models for ductile metals containing non-spherical voids—case of axisymmetric oblate ellipsoidal cavities. J Eng Mat Tech 116:290–297CrossRefGoogle Scholar
  48. Gologanu M, Leblond JB, Perrin G, Devaux J (1997) Recent extensions of Gurson’s model for porous ductile metals. CISM lectures series. In: Suquet P (ed) Continuum micromechanics. Springer, New York, pp 61–130CrossRefGoogle Scholar
  49. Gologanu M, Leblond JB, Perrin G, Devaux J (2001a) Theoretical models for void coalescence in porous ductile solids—I: coalescence in “layers”. Int J Solids Struct 38:5581–5594CrossRefGoogle Scholar
  50. Gologanu M, Leblond JB, Perrin G, Devaux J (2001b) Theoretical models for void coalescence in porous ductile solids–II: coalescence in “columns”. Int J Solids Struct 38:5595–5604CrossRefGoogle Scholar
  51. Goods SH, Brown LM (1979) The nucleation of cavities by plastic deformation. Acta Metal 27:1–15CrossRefGoogle Scholar
  52. Gurland J, Plateau J (1963) The mechanism of ductile rupture of metals containing inclusions. Trans ASM 56:442–454Google Scholar
  53. Gurson AL (1975) Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth and interaction. PhD thesis, Brown University, ProvidenceGoogle Scholar
  54. Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media. J Eng Mat Tech 99:2–15CrossRefGoogle Scholar
  55. Hadamard J (1903) Leçons sur la propagation des ondes et les équations de l’hydrodynamique, Librairie Scientifique, A. Herrmann, Paris, chap 6Google Scholar
  56. Haltom SS, Kyriakides S, Ravi-Chandar K (2013) Ductile failure under combined shear and tension. Int J Solids Struct 50:1507–1522CrossRefGoogle Scholar
  57. Han X, Besson J, Forest S, Tanguy B, Bugat S (2013) A yield function for single crystals containing voids. Int J Solids Struct 50:2115–2131CrossRefGoogle Scholar
  58. Hill R (1948) A theory of yielding and plastic flow of anisotropic solids. Proc R Soc Lond A 193:281–297CrossRefGoogle Scholar
  59. Hill R (1958) A general theory of uniqueness and stability in elastic–plastic solids. J Mech Phys Solids 6:236–249CrossRefGoogle Scholar
  60. Hill R (1962) Acceleration waves in solids. J Mech Phys Solids 10:1–16CrossRefGoogle Scholar
  61. Hill R (1967) The essential structure of constitutive laws for metal composites and polycrystals. J Mech Phys Solids 15:79–95CrossRefGoogle Scholar
  62. Hom CL, McMeeking RM (1989) Three-dimensional void growth before a blunting crack tip. J Mech Phys Solids 37:395–415CrossRefGoogle Scholar
  63. Horstemeyer MF, Gokhale AM (1999) A void-crack nucleation model for ductile metals. Int J Solids Struct 36:5029–5055CrossRefGoogle Scholar
  64. Hu C, Ghosh S (2008) Locally enhanced voronoi cell finite element model (LE-VCFEM) for simulating evolving fracture in ductile microstructures containing inclusions. Int J Numer Meths Eng 76:1955–1992CrossRefGoogle Scholar
  65. Huang Y (1991) Accurate dilatation rates for spherical voids in triaxial stress fields. J Appl Mech 58:1084–1085CrossRefGoogle Scholar
  66. Huespe A, Needleman A, Oliver J, Sánchez P (2012) A finite strain, finite band method for modeling ductile fracture. Int J Plast 28:53–69CrossRefGoogle Scholar
  67. Huespe AE, Needleman A, Oliver J, Sánchez PJ (2009) A finite thickness band method for ductile fracture analysis. Int J Plast 25:2349–2365CrossRefGoogle Scholar
  68. Hussein MI, Borg U, Niordson CF, Deshpande VS (2008) Plasticity size effects in voided crystals. J Mech Phys Solids 56:114–131CrossRefGoogle Scholar
  69. Idiart MI (2007) Nonlinear sequential laminates reproducing hollow sphere assemblages. C R Mecanique 335:363–368CrossRefGoogle Scholar
  70. Idiart MI (2008) Modeling the macroscopic behavior of two-phase nonlinear composites by infinite-rank laminates. J Mech Phys Solids 56:2599–2617CrossRefGoogle Scholar
  71. Jacques N, Mercier S, Molinari A (2012) Effects of microscale inertia on dynamic ductile crack growth. J Mech Phys Solids 60:665–690CrossRefGoogle Scholar
  72. Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Frac Mech 21:31–48CrossRefGoogle Scholar
  73. Joly P, Cozar R, Pineau A (1990) Effect of crystallographic orientation of austenite on the formation of cleavage cracks in ferrite in an aged duplex stainless steel. Scripta Metall Mater 24:2235–2240CrossRefGoogle Scholar
  74. Kailasam M, Ponte Castaneda P (1998) A general constitutive theory for linear and nonlinear particulate media with microstructure evolution. J Mech Phys Solids 46:427–465CrossRefGoogle Scholar
  75. Keralavarma SM, Benzerga AA (2008) An approximate yield criterion for anisotropic porous media. C R Mecanique 336:685–692CrossRefGoogle Scholar
  76. Keralavarma SM, Benzerga AA (2010) A constitutive model for plastically anisotropic solids with non-spherical voids. J Mech Phys Solids 58:874–901CrossRefGoogle Scholar
  77. Keralavarma SM, Chockalingam S (2016) A criterion for void coalescence in anisotropic ductile materials. Int J Plast (in press)Google Scholar
  78. Kondori B, Benzerga AA (2014) Effect of stress triaxiality on the flow and fracture of Mg alloy AZ31. Metall Mater Trans A 45:3292–3307CrossRefGoogle Scholar
  79. Koplik J, Needleman A (1988) Void growth and coalescence in porous plastic solids. Int J Solids Struct 24:835–853CrossRefGoogle Scholar
  80. Lebensohn R, Cazacu O (2012) Effect of single-crystal plastic deformation mechanisms on the dilatational plastic response of porous polycrystals. Int J Solids Struct 49:3838–3852CrossRefGoogle Scholar
  81. Leblond JB, Gologanu M (2008) External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void. C R Mecanique 336:813–819CrossRefGoogle Scholar
  82. Leblond JB, Mottet G (2008) A theoretical approach of strain localization within thin planar bands in porous ductile materials. C R Mecanique 336:176–189CrossRefGoogle Scholar
  83. Leblond JB, Morin L (2014) Gurson’s criterion and its derivation revisited. J Appl Mech 81(051):012Google Scholar
  84. Leblond JB, Perrin G, Devaux J (1994) Bifurcation effects in ductile metals with nonlocal damage. J Appl Mech 61:236–242CrossRefGoogle Scholar
  85. Leblond JB, Perrin G, Devaux J (1995) An improved Gurson-type model for hardenable ductile metals. Eur J Mech A/Solids 14:499–527Google Scholar
  86. Lee BJ, Mear ME (1992) Axisymmetric deformation of power-law solids containing a dilute concentration of aligned spheroidal voids. J Mech Phys Solids 40:1805–1836CrossRefGoogle Scholar
  87. Lee BJ, Mear ME (1999) Stress concentration induced by an elastic spheroidal particle in a plastically deforming solid. J Mech Phys Solids 47:1301–1336CrossRefGoogle Scholar
  88. Madou K, Leblond JB (2012a) A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids—I: limit-analysis of some representative cell. J Mech Phys Solids 60:1020–1036CrossRefGoogle Scholar
  89. Madou K, Leblond JB (2012b) A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids—II: determination of yield criterion parameters. J Mech Phys Solids 60:1037–1058CrossRefGoogle Scholar
  90. Madou K, Leblond JB (2013) Numerical studies of porous ductile materials containing arbitrary ellipsoidal voids—I: yield surfaces of representative cells. Eur J Mech A/Solids 42:480–489CrossRefGoogle Scholar
  91. Madou K, Leblond JB, Morin L (2013) Numerical studies of porous ductile materials containing arbitrary ellipsoidal voids—II: evolution of the length and orientation of the void axes. Eur J Mech A/Solids 42:490–507CrossRefGoogle Scholar
  92. Mandel J (1964) Contribution théorique à l’étude de l’écrouissage et des lois d’écoulement plastique. 11th international congress on applied mechanics. Springer, Berlin, pp 502–509Google Scholar
  93. Mandel J (1966) Conditions de stabilité et postulat de Drucker. In: Krautchenko J, Sirieys PM (eds) Rheology and soil mechanics. Springer, Berlin, pp 58–68Google Scholar
  94. Mansouri LZ, Chalal H, Abed-Meraim F (2014) Ductility limit prediction using a GTN damage model coupled with localization bifurcation analysis. Mech Mater 76:64–92CrossRefGoogle Scholar
  95. Mathur KK, Needleman A, Tvergaard V (1996) Three dimensional analysis of dynamic ductile crack growth in a thin plate. J Mech Phys Solids 44:439–464CrossRefGoogle Scholar
  96. McClintock FA (1968) A criterion for ductile fracture by the growth of holes. J Appl Mech 35:363–371CrossRefGoogle Scholar
  97. McClintock FA, Kaplan SM, Berg CA (1966) Ductile fracture by hole growth in shear bands. Int J Frac Mech 2:614–627Google Scholar
  98. McMeeking RM (1977) Finite deformation analysis of crack-tip opening in elastic-plastic materials and implications for fracture. J Mech Phys Solids 25:357–381CrossRefGoogle Scholar
  99. Mear ME, Hutchinson JW (1985) Influence of yield surface curvature on flow localization in dilatant plasticity. Mech Mater 4:395–407CrossRefGoogle Scholar
  100. Michel JC, Suquet P (1992) The constitutive law of nonlinear viscous and porous materials. J Mech Phys Solids 40:783–812CrossRefGoogle Scholar
  101. Monchiet V, Gruescu C, Charkaluk E, Kondo D (2006) Approximate yield criteria for anisotropic metals with prolate or oblate voids. C R Mecanique 334:431–439CrossRefGoogle Scholar
  102. Monchiet V, Cazacu O, Charkaluk E, Kondo D (2008) Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids. Int J Plast 24:1158–1189CrossRefGoogle Scholar
  103. Monchiet V, Charkaluk E, Kondo D (2011) A micromechanics-based modification of the gurson criterion by using Eshelby-like velocity fields. Eur J Mech A/Solids 30:940–949Google Scholar
  104. Morin L (2015) Influence des effets de forme et de taille des cavités, et de l’anisotropie plastique sur la rupture ductile. PhD thesis, Université Pierre et Marie Curie—Paris VIGoogle Scholar
  105. Morin L, Madou K, Leblond JB, Kondo D (2014) A new technique for finite element limit-analysis of Hill materials, with an application to the assessment of criteria for anisotropic plastic porous solids. Int J Eng Sci 74:65–79CrossRefGoogle Scholar
  106. Morin L, Leblond JB, Benzerga AA (2015a) Coalescence of voids by internal necking: theoretical estimates and numerical results. J Mech Phys Solids 75:140–158CrossRefGoogle Scholar
  107. Morin L, Leblond JB, Kondo D (2015b) A Gurson-type criterion for plastically anisotropic solids containing arbitrary ellipsoidal voids. Int J Solids Struct 77:86–101CrossRefGoogle Scholar
  108. Morin L, Leblond JB, Benzerga AA, Kondo D (2016) A unified criterion for the growth and coalescence of microvoids. J Mech Phys Solids (in press)Google Scholar
  109. Nahshon K, Hutchinson JW (2008) Modification of the Gurson model for shear failure. Eur J Mech A/Solids 27:1–17CrossRefGoogle Scholar
  110. Needleman A (1972) A numerical study of necking in circular cylindrical bars. J Mech Phys Solids 20:111–127CrossRefGoogle Scholar
  111. Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54:525CrossRefGoogle Scholar
  112. Needleman A (2015) The effect of rate dependence on localization of deformation and failure in softening solids. J Appl Mech 82(021):002Google Scholar
  113. Needleman A, Rice JR (1978) Limits to ductility set by plastic flow localization. In: Koistinen DP, Wang NM (eds) Mechanics of sheet metal forming. Plenum Press, Berlin, pp 237–267Google Scholar
  114. Needleman A, Tvergaard V (1984) An analysis of ductile rupture in notched bars. J Mech Phys Solids 32:461–490CrossRefGoogle Scholar
  115. Needleman A, Tvergaard V (1991) A numerical study of void distribution effects on dynamic, ductile crack growth. Eng Frac Mech 38:157–173CrossRefGoogle Scholar
  116. Needleman A, Tvergaard V (1994) Mesh effects in the analysis of dynamic ductile crack growth. Eng Frac Mech 47:75–91CrossRefGoogle Scholar
  117. Nielsen KL (2008a) 3D modelling of plug failure in resistance spot welded shear-lab specimens (DP600-steel). Int J Frac 153:125–139CrossRefGoogle Scholar
  118. Nielsen KL (2008b) Ductile damage development in friction stir welded aluminum (AA2024) joints. Eng Frac Mech 75:2795–2811CrossRefGoogle Scholar
  119. Nielsen KL (2010) Predicting failure response of spot welded joints using recent extensions to the Gurson model. Comput Mater Sci 48:71–82CrossRefGoogle Scholar
  120. Nielsen KL, Tvergaard V (2009) Effect of a shear modified Gurson model on damage development in a few tensile specimen. Int J Solids Struct 46:587–601CrossRefGoogle Scholar
  121. Nielsen KL, Tvergaard V (2010) Ductile shear failure or plug failure of spot welds modelled by modified gurson model. Eng Frac Mech 77:1031–1047CrossRefGoogle Scholar
  122. Nielsen KL, Dahl J, Tvergaard V (2012) Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D. Int J Frac 177:97–108CrossRefGoogle Scholar
  123. Ortiz M, Molinari A (1992) Effect of strain hardening and rate sensitivity on the dynamic growth of a void in a plastic material. J Appl Mech 59:48–53CrossRefGoogle Scholar
  124. Osovski S, Srivastava A, Ponson L, Bouchaud E, Tvergaard V, Ravi-Chandar K, Needleman A (2015) The effect of loading rate on ductile fracture toughness and fracture surface roughness. J Mech Phys Solids 76:20–46CrossRefGoogle Scholar
  125. Pan J, Saje M, Needleman A (1983) Localization of deformation in rate sensitive porous plastic solids. Int J Frac 21:261–278CrossRefGoogle Scholar
  126. Papasidero J, Doquet V, Mohr D (2015) Ductile fracture of aluminum 2024–t351 under proportional and non-proportional multi-axial loading: Bao-wierzbicki results revisited. Int J Solids Struct 69–70:459–474CrossRefGoogle Scholar
  127. Pardoen T, Hutchinson JW (2000) An extended model for void growth and coalescence. J Mech Phys Solids 48:2467–2512CrossRefGoogle Scholar
  128. Paux J, Morin L, Brenner R, Kondo D (2015) An approximate yield criterion for porous single crystals. Eur J Mech A/Solids 51:1–10CrossRefGoogle Scholar
  129. Perrin G (1992) Contribution à l’étude théorique et numérique de la rupture ductile des métaux. PhD thesis, Ecole PolytechniqueGoogle Scholar
  130. Perrin G, Leblond JB (1990) Analytical study of a hollow sphere made of plastic porous material and subjected to hydrostatic tension—application to some problems in ductile fracture of metals. Int J Plast 6:677–699CrossRefGoogle Scholar
  131. Perrin G, Leblond JB (1993) Rudnicki and Rice’s analysis of strain localization revisited. J Appl Mech 60:842–846CrossRefGoogle Scholar
  132. Pineau A, Benzerga AA, Pardoen T (2016) Failure of metals I. brittle and ductile fracture. Acta Mater 107:424–483CrossRefGoogle Scholar
  133. Ponte Castaneda P (1991) The effective mechanical properties of nonlinear composites. J Mech Phys Solids 39:45–71CrossRefGoogle Scholar
  134. Ponte Castañeda P, Zaidman M (1994) Constitutive models for porous materials with evolving microstructure. J Mech Phys Solids 42:1459–1495CrossRefGoogle Scholar
  135. Ponte Castaneda P (2002) Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I—theory. J Mech Phys Solids 50:737–757CrossRefGoogle Scholar
  136. Ponte Castaneda P (2012) Bounds for nonlinear composites via iterated homogenization. J Mech Phys Solids 60:1583–1604CrossRefGoogle Scholar
  137. Puttick KE (1959) Ductile fracture in metals. Phil Mag 4:964–969CrossRefGoogle Scholar
  138. Raniecki B, Bruhns OT (1981) Bounds to bifurcation stresses in solids with non-associated plastic-flow law at finite strain. J Mech Phys Solids 29:153–172CrossRefGoogle Scholar
  139. Rice J (1976) The localization of plastic deformation. In: Koiter W (ed) 14th International congress theoretical and applied mechanics, North–Holland, Amsterdam, pp 207–220Google Scholar
  140. Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35:379–386CrossRefGoogle Scholar
  141. Rice JR, Johnson MA (1970) The role of large crack tip geometry changes in plane strain fracture. In: Inelastic behavior of solids, Mc Graw Hill, New York, pp 641–672Google Scholar
  142. Rice JR, Tracey DM (1969) On the enlargement of voids in triaxial stress fields. J Mech Phys Solids 17:201–217CrossRefGoogle Scholar
  143. Ritchie RO (1978) On the relationship between fracture toughness and Charpy V-Notch energy in ultrahigh strength steels. In: Rosenfield AR, Gegel HL, Hasson DF (eds) What does the Charpy test really tell us?. American Society for Metals, Metals Park, pp 54–73Google Scholar
  144. Rodriguez AK, Ayoub GA, Mansoor B, Benzerga AA (2016) Effect of strain rate and temperature on fracture of AZ31B magnesium alloy. Acta Mater 112:194–208Google Scholar
  145. Rogers HC (1960) Tensile fracture of ductile metals. Trans Met Soc AIME 218:498–506Google Scholar
  146. Rousselier G (1981) Finite deformation constitutive relations including ductile fracture damage. In: Nemat–Nasser (ed) Three-dimensional constitutive equations of damage and fracture. Pergamon Press, North Holland, pp 331–355Google Scholar
  147. Rousselier G (1987) Ductile fracture models and their potential in local approach of fracture. Nucl Eng Design 105:97–111CrossRefGoogle Scholar
  148. Rudnicki JW, Rice JR (1975) Conditions for the localization of deformation in pressure–sensitive dilatant materials. J Mech Phys Solids 23:371–394Google Scholar
  149. Ruggieri C, Panontin TL, Dodds RH (1996) Numerical modeling of ductile crack growth in 3-D using computational cell elements. Int J Frac 82:67–95CrossRefGoogle Scholar
  150. Scheyvaerts F, Onck PR, Tekoglu C, Pardoen T (2011) The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension. J Mech Phys Solids 59:373–397CrossRefGoogle Scholar
  151. Segurado J, Llorca J (2009) An analysis of the size effect on void growth in single crystals using discrete dislocation dynamics. Acta Mater 57:1427–1436CrossRefGoogle Scholar
  152. Shabrov MN, Needleman A (2002) An analysis of inclusion morphology effects on void nucleation. Modell Simul Mater Sci Eng 10:163–183CrossRefGoogle Scholar
  153. Shima S, Oyane M (1976) Plasticity theory for porous metals. Int J Mech Sci 18:285–291CrossRefGoogle Scholar
  154. Shinohara Y, Madi Y, Besson J (2016) Anisotropic ductile failure of a high-strength line pipe steel. Int J Frac 197:127–145Google Scholar
  155. Song D, Agoras M, Ponte Castaneda P (2015) The evolution of pore shape and orientation in plastically deforming metals: implications for macroscopic response and shear localization. Mech Mater 90:47–68CrossRefGoogle Scholar
  156. Srivastava A, Ponson L, Osovski S, Bouchaud E, Tvergaard V, Needleman A (2014) Effect of inclusion density on ductile fracture toughness and roughness. J Mech Phys Solids 63:62–79CrossRefGoogle Scholar
  157. Tang S, Kopacz AM, Chan O’Keeffe S, Olson GB, Liu WK (2013) Three-dimensional ductile fracture analysis with a hybrid multiresolution approach and microtomography. J Mech Phys Solids 61:2108–2124CrossRefGoogle Scholar
  158. Tang H, Fairchild DP, Cheng W, Kan W, Cook M, Macia ML (2015) Development of surface flaw interaction rules for strain-based pipelines. Int J Offshore Polar Eng 25:45–55Google Scholar
  159. Tanguy B, Besson J, Piques R, Pineau A (2005) Ductile to brittle transition of an A508 steel characterized by charpy impact test. Part II: modeling of the charpy transition curve. Eng Frac Mech 72:413–434CrossRefGoogle Scholar
  160. Tekoglu C, Leblond JB, Pardoen T (2012) A criterion for the onset of void coalescence under combined tension and shear. J Mech Phys Solids 60:1363–1381CrossRefGoogle Scholar
  161. Thomas TY (1961) Plastic flow and fracture in solids. Academic Press, New YorkGoogle Scholar
  162. Thomason PF (1985) Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids. Acta Metal 33:1079–1085CrossRefGoogle Scholar
  163. Tipper CF (1949) The fracture of metals. Metall 39:133–137Google Scholar
  164. Torki ME, Benzerga AA, Leblond JB (2015) On void coalescence under combined tension and shear. J Appl Mech 82(7):071005CrossRefGoogle Scholar
  165. Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Frac 17:389–407CrossRefGoogle Scholar
  166. Tvergaard V (1982a) Ductile fracture by cavity nucleation between larger voids. J Mech Phys Solids 30:265–286CrossRefGoogle Scholar
  167. Tvergaard V (1982b) On localization in ductile materials containing spherical voids. Int J Frac 18:237–252Google Scholar
  168. Tvergaard V (1987) Effect of yield surface curvature and void nucleation on plastic flow localization. J Mech Phys Solids 35:43–60CrossRefGoogle Scholar
  169. Tvergaard V (1990) Material failure by void growth to coalescence. Adv Appl Mech 27:83–151CrossRefGoogle Scholar
  170. Tvergaard V (2008) Shear deformation of voids with contact modeled by internal pressure. Int J Mech Sci 50:1459–1465CrossRefGoogle Scholar
  171. Tvergaard V (2009) Behaviour of voids in a shear field. Int J Frac 158:41–49CrossRefGoogle Scholar
  172. Tvergaard V (2012) Effect of stress-state and spacing on voids in a shear-field. Int J Solids Struct 49:3047–3054CrossRefGoogle Scholar
  173. Tvergaard V, Hutchinson JW (2002) Two mechanisms of ductile fracture: void by void growth versus multiple void interaction. Int J Solids Struct 39:3581–3597CrossRefGoogle Scholar
  174. Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metal 32:157–169CrossRefGoogle Scholar
  175. Tvergaard V, Needleman A (1986) Effect of material rate sensitivity on the failure modes in the Charpy V-notch test. J Mech Phys Solids 34:213–241CrossRefGoogle Scholar
  176. Tvergaard V, Needleman A (1988) An analysis of the temperature and rate dependence of Charpy V-notch energies for a high nitrogen steel. Int J Frac 37:197–215CrossRefGoogle Scholar
  177. Tvergaard V, Needleman A (1994) Effect of crack meandering on dynamic, ductile fracture. J Mech Phys Solids 38:447–471Google Scholar
  178. Tvergaard V, Needleman A (1995) Effects of nonlocal damage in porous plastic solids. Int J Solids Struct 32:1063–1077CrossRefGoogle Scholar
  179. Tvergaard V, Needleman A (2000) Analysis of the Charpy V-notch test for welds. Eng Frac Mech 65:627–643CrossRefGoogle Scholar
  180. Tvergaard V, Needleman A (2004) 3d analyses of the effect of weld orientation in Charpy specimens. Eng Frac Mech 71:2179–2195CrossRefGoogle Scholar
  181. Tvergaard V, Nielsen KL (2010) Relations between a micro-mechanical model and a damage model for ductile failure in shear. J Mech Phys Solids 58:1243–1252CrossRefGoogle Scholar
  182. Van Stone RH, Cox TB, Low JR, Psioda JA (1985) Microstructural aspects of fracture by dimpled rupture. Int Met Rev 30:157–179CrossRefGoogle Scholar
  183. Willis JR (1977) Bounds and self-consistent estimates for the overall properties of anisotropic composites. J Mech Phys Solids 25:185–202CrossRefGoogle Scholar
  184. Willis JR (1991) On methods for bounding the overall properties of nonlinear composites. J Mech Phys Solids 39:73–86CrossRefGoogle Scholar
  185. Wilner B (1988) Stress analysis of particles in metals. J Mech Phys Solids 36:141–165CrossRefGoogle Scholar
  186. Xu XP, Needleman A (1992) The influence of nucleation criterion on shear localization in rate-sensitive porous plastic solids. Int J Plast 8:315–330CrossRefGoogle Scholar
  187. Xu XP, Needleman A (1993) Void nucleation by inclusion debonding in a crystal matrix. Model Simul Mater Sci Eng 1:111–132CrossRefGoogle Scholar
  188. Xue L (2008) Constitutive modeling of void shearing effect in ductile fracture of porous materials. Eng Frac Mech 75:3343–3366CrossRefGoogle Scholar
  189. Xue Z, Faleskog J, Hutchinson JW (2013) Tension-torsion fracture experiments—Part II: simulations with the extended Gurson model and a ductile fracture criterion based on plastic strain. Int J Solids Struct 50:4258–4269CrossRefGoogle Scholar
  190. Yamamoto H (1978) Conditions for shear localization in the ductile fracture of void-containing materials. Int J Frac 14:347–365CrossRefGoogle Scholar
  191. Zhang ZL, Thaulow C, Odegard J (2000) A complete Gurson model approach for ductile fracture. Eng Frac Mech 67:155–168CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Ahmed Amine Benzerga
    • 1
  • Jean-Baptiste Leblond
    • 2
  • Alan Needleman
    • 3
  • Viggo Tvergaard
    • 4
  1. 1.Department of Aerospace EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Institut Jean le Rond d’AlembertSorbonne Universités, Université Pierre et Marie CurieParisFrance
  3. 3.Department of Materials Science and EngineeringTexas A&M UniversityCollege StationUSA
  4. 4.Department of Mechanical EngineeringThe Technical University of DenmarkLyngbyDenmark

Personalised recommendations