International Journal of Fracture

, Volume 203, Issue 1–2, pp 81–98 | Cite as

Lattice orientation and crack size effect on the mechanical properties of Graphene

  • P. R. Budarapu
  • B. Javvaji
  • V. K. Sutrakar
  • D. Roy Mahapatra
  • M. Paggi
  • G. Zi
  • T. Rabczuk
CompMech

Abstract

The effect of lattice orientation and crack length on the mechanical properties of Graphene are studied based on molecular dynamics simulations. Bond breaking and crack initiation in an initial edge crack model with 13 different crack lengths, in 10 different lattice orientations of Graphene are examined. In all the lattice orientations, three recurrent fracture patterns are reported. The influence of the lattice orientation and crack length on yield stress and yield strain of Graphene is also investigated. The arm-chair fracture pattern is observed to possess the lowest yield properties. A sudden decrease in yield stress and yield strain can be noticed for crack sizes <10 nm. However, for larger crack sizes, a linear decrease in yield stress is observed, whereas a constant yield strain of \(\approx \)0.05 is noticed. Therefore, the yield strain of \(\approx \)0.05 can be considered as a critical strain value below which Graphene does not show failure. This information can be utilized as a lower bound for the design of nano-devices for various strain sensor applications. Furthermore, the yield data will be useful while developing the Graphene coating on Silicon surface in order to enhance the mechanical and electrical characteristics of solar cells and to arrest the growth of micro-cracks in Silicon cells.

Keywords

Graphene fracture Molecular dynamics Bond elongation and rotation Lattice orientation and initial crack size 

References

  1. Ansari R, Ajori S, Motevalli B (2012) Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation. Superlattices Microstruct 51:274–289CrossRefGoogle Scholar
  2. Berardone I, Corrado M, Paggi M (2014) A generalized electric model for mono and polycrystalline silicon in the presence of cracks and random defects. Energy Procedia 55:22–29CrossRefGoogle Scholar
  3. Bu H, Chen Y, Zou M, Yi H, Bi K, Ni Z (2009) Atomistic simulations of mechanical properties of graphene nanoribbons. Phys Lett A 373:3359–3362CrossRefGoogle Scholar
  4. Budarapu P, Javvaji B, Sutrakar V, Mahapatra D, Zi G, Rabczuk T (2015) Crack propagation in graphene. J Appl Phys 118:382–395CrossRefGoogle Scholar
  5. Budarapu P, Rammohan B, Vijay S, Satish B, Raghunathan R (2009) Aero-elastic analysis of stiffened composite wing structure. J Vib Eng Technol 8(3):255–264Google Scholar
  6. Budarapu P, Sudhir S, Brahmanandam J, Mahapatra D (2014c) Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium. Front Struct Civil Eng 8(2):151–159CrossRefGoogle Scholar
  7. Cao G (2014) Atomistic studies of mechanical properties of graphene. Polymers 6:2404–2432CrossRefGoogle Scholar
  8. Changgu L, Xiaoding W, Jeffrey WK, James H (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388CrossRefGoogle Scholar
  9. Chen K, Bin S, Yonghai Y, Juanjuan Q, Lin G (2015a) Binary synergy strengthening and toughening of bio-inspired nacre-like graphene oxide/sodium alginate composite paper. ACS Nano 9(8):8165–8175CrossRefGoogle Scholar
  10. Chen M, Quek S, Sha Z, Chiu C, Pei Q, Zhang Y (2015b) Effects of grain size, temperature and strain rate on the mechanical properties of polycrystalline graphene -a molecular dynamics study. Carbon 85:135–146CrossRefGoogle Scholar
  11. Chuvilin A, Meyer J, Algara-Siller G, Kaiser U (2009) From graphene constrictions to single carbon chains. New J Phys 11:083019CrossRefGoogle Scholar
  12. Datta D, Nadimpalli S, Yinfeng L, Shenoy V (2015) Effect of crack length and orientation on the mixed-mode fracture behavior of graphene. Extreme Mech Lett 5:10–17CrossRefGoogle Scholar
  13. Fengnian X, Han W, Di X, Madan D, Ashwin R (2014) Two-dimensional material nanophotonics. Nat Photonics 8:899–907CrossRefGoogle Scholar
  14. Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S, Colombo L (2014) Electronics based on two-dimensional materials. Nat Nanotechnol 9:768–779CrossRefGoogle Scholar
  15. Gamboa A, Vignoles G, Leyssale J-M (2015) On the prediction of graphene’s elastic properties with reactive empirical bond order potentials. Carbon 89:176–187CrossRefGoogle Scholar
  16. Geim A (2009) Graphene: status and prospects. Science 324:1530–1534CrossRefGoogle Scholar
  17. Grantab R, Shenoy V, Ruoff R (2010) Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330:946–948CrossRefGoogle Scholar
  18. Hadden C, Klimek-McDonald D, Pineda E, King J, Reichanadter A, Miskioglu I, Gowtham S, Odegard G (2015) Mechanical properties of graphene nanoplatelet/carbon fiber/epoxy hybrid composites: Multiscale modeling and experiments. Carbon 95:100–112CrossRefGoogle Scholar
  19. Huhu C, Chuangang H, Yang Z, Liangti Q (2014) Graphene fiber: a new material platform for unique applications. NPG Asia Mater 6:e113CrossRefGoogle Scholar
  20. Jhon Y, Jhom Y, Yoem G, Jhon M (2014) Orientation dependence of the fracture behavior of graphene. Carbon 66:619–628CrossRefGoogle Scholar
  21. Jhon Y, Zhu S, Ahn J, Jhon M (2012) The mechanical responses of tilted and non-tilted grain boundaries in graphene. Carbon 50:3708–3716CrossRefGoogle Scholar
  22. Jin C, Lan H, Peng L, Suenaga K, Iijima S (2009) Deriving carbon atomic chains from graphene. Phys Rev Lett 102:205501CrossRefGoogle Scholar
  23. Khare R, Mielke S, Paci J, Zhang S, Ballarini R, Schatz G, Belytschko T (2007) Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets. Phys Rev B 75:075412CrossRefGoogle Scholar
  24. Kim K, Artyukhov V, Regan W, Liu Y, Crommie M, Yakobson B, Zettl A (2012) Ripping graphene: preferred directions. Nano Lett 12:293–297CrossRefGoogle Scholar
  25. Kim Y, Lee J, Yeom M, Shin J, Kim H, Cui Y, Kysar J, Hone J, Jung Y, Jeon S, Han S (2013) Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites. Nat Commun 4:2114Google Scholar
  26. Kinam K, Jae-Young C, Taek K, Seong-Ho C, Hyun-Jong C (2011) A role for graphene in silicon-based semiconductor devices. Nature 479:338–344Google Scholar
  27. Köntges M, Kunze I, Kajari-Schröder S, Breitenmoser X, Bjrneklett B (2011) The risk of power loss in crystalline silicon based photovoltaic modules due to microcracks. Sol Energy Mater Sol Cells 95:1131–1137CrossRefGoogle Scholar
  28. Kostarelos K, Novoselov K (2014) Graphene devices for life. Nat Nanotechnol 9:744–745CrossRefGoogle Scholar
  29. Kravets V, Jalil R, Kim Y-J, Ansell D, Aznakayeva D, Thackray B, Britnell L, Belle B, Withers F, Radko I, Han Z, Bozhevolnyi S, Novoselov K, Geim A, Grigorenko A (2014) Graphene-protected copper and silver plasmonics. Sci Rep 4:5517CrossRefGoogle Scholar
  30. Liu F, Ming P, Li J (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 76:064120CrossRefGoogle Scholar
  31. Liu J (2014) Charging graphene for energy. Nat Nanotechnol 9:739–741CrossRefGoogle Scholar
  32. Marc G, McMillan W (1985) The virial theorem. Adv Chem Phys 58:209Google Scholar
  33. Mics Z, Tielrooij K-J, Parvez K, Jensen S, Ivanov I, Feng X, M“ullen K, Bonn M, Turchinovich D (2015) Thermodynamic picture of ultrafast charge transport in graphene. Nat Commun 6:7655CrossRefGoogle Scholar
  34. Morpurgo A (2015) Ten years of nature physics: the abc of 2D materials. Nat Phys 11:625–626CrossRefGoogle Scholar
  35. Paggi M, Berardone I, Infuso A, Corrado M (2014) Fatigue degradation and electric recovery in silicon solar cells embedded in photovoltaic modules. Sci Rep 4:4506Google Scholar
  36. Paggi M, Corrado M, Rodriguez MA (2013) A multi-physics and multi-scale numerical approach to microcracking and power-loss in photovoltaic modules. Compos Struct 95:630–638CrossRefGoogle Scholar
  37. Paggi M, Kajari-Schröder S, Eitner U (2011) Thermo-mechanical deformations in photovoltaic laminates. J Strain Anal Eng Des 46(8):772–782CrossRefGoogle Scholar
  38. Pei Q, Zhang Y, Shenoy V (2010) A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon 48:898–904CrossRefGoogle Scholar
  39. Peng Z, Lulu M, Feifei F, Zhi Z, Cheng P, Phillip EL, Zheng L, Yongji G, Jiangnan Z, Xingxiang Z, Pulickel MA, Ting Z, Jun L (2014) Fracture toughness of graphene. Nat Commun 5:3782Google Scholar
  40. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19CrossRefGoogle Scholar
  41. Pospischil A, Furchi M, Mueller T (2014) Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat Nanotechnol 9:257–261CrossRefGoogle Scholar
  42. Quan L, Zhen T, Xueqian Z, Ranjan S, Liangliang D, Jianqiang G, Jiaguang H, Weili Z (2015) Active graphene-silicon hybrid diode for terahertz waves. Nat Commun 6:7082CrossRefGoogle Scholar
  43. Rodrigues G, Zelenovskiy P, Romanyuk K, Luchkin S, Kopelevich Y, Kholkin A (2015) Strong piezoelectricity in single-layer graphene deposited on sio\(_2\) grating substrates. Nat Commun 6:7572CrossRefGoogle Scholar
  44. Santanu S, Elena B, Haddon RC (2012) Covalent chemistry in graphene electronics. Mater Today 15(6):276–285CrossRefGoogle Scholar
  45. Sarma D, Adam S, Hwang E, Rossi E (2011) Electronic transport in two dimensional graphene. Rev Mod Phys 83:407–470CrossRefGoogle Scholar
  46. Schröder SK, Kunze I, Köntges M (2012) Criticality of cracks in PV modules. Energy Procedia 27:658–663Google Scholar
  47. Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5:487–496CrossRefGoogle Scholar
  48. Shenderova O, Brenner D, Omeltchenko A, Su X, Yang L (2000) Atomistic modeling of the fracture of polycrystalline diamond. Phys Rev B 61(6):3877–3888CrossRefGoogle Scholar
  49. Shin S, Choi H, Shin J, Bae D (2015) Strengthening behavior of few-layered graphene/ aluminum composites. Carbon 82:143–151CrossRefGoogle Scholar
  50. Son I, Park J, Kwon S, Park S, R“ummeli M, Bachmatiuk A, Song H, Ku J, Choi J, Choi J, Doo S-G, Chang H (2015) Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat Commun 6:7393CrossRefGoogle Scholar
  51. Subramaniyan A, Sun C (2008) Continuum interpretation of virial stress in molecular simulations. Int J Solids Struct 45:4340–4346CrossRefGoogle Scholar
  52. Sun X-Y, Hu H, Cao C, Xua Y-J (2015) Anisotropic vacancy-defect-induced fracture strength loss of graphene. RSC Adv 5:13623–13627CrossRefGoogle Scholar
  53. Swope W, Anderson H, Berens P, Wilson K (1982) A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys 76:637CrossRefGoogle Scholar
  54. Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39(8):5566–5568CrossRefGoogle Scholar
  55. Thomas S, Ajith K (2014) Molecular dynamics simulation of the thermo-mechanical properties of monolayer graphene sheet. Proc Mater Sci 5:489–498CrossRefGoogle Scholar
  56. Tiwary C, Javvaji B, Kumar C, Mahapatra D, Ozden S, Ajayan P, Chattopadhyay K (2015) Chemical-free graphene by unzipping carbon nanotubes using cryo-milling. Carbon 217–224Google Scholar
  57. Tiwary CS, Vishnu D, Kole AK, Brahmanandam J, Mahapatra DR, Kumbhakar P, Chattopadhyay K (2016) Stabilization of the high-temperature and high-pressure cubic phase of ZnO by temperature-controlled milling. J Mater Sci 51(1):126–137Google Scholar
  58. Traversi F, Raillon C, Benameur S, Liu K, Khlybov S, Tosun M, Krasnozhon D, Kis A, Radenovic A (2014) Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nature Nanotechnol 8:939–945CrossRefGoogle Scholar
  59. Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S (2011) Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49:198–205Google Scholar
  60. Volokh KY (2012) On the strength of graphene. J Appl Mech 79(6):064501–064501. doi:10.1115/1.4005582 CrossRefGoogle Scholar
  61. Weiwei Z, Yanlei W, Zhangting W, Wenhui W, Kedong B, Zheng L, Juekuan Y, Yunfei C, Zhiping X, Zhenhua N (2015) Defect-engineered heat transport in graphene: a route to high efficient thermal rectification. Sci Rep 5:11962CrossRefGoogle Scholar
  62. Wen S, Yuqi Y, Jiangnan S, Hua C (2012) A graphene-based composite material noncovalently functionalized with a chemiluminescence reagent: synthesis and intrinsic chemiluminescence activity. Chem Commun 48:2894–2896CrossRefGoogle Scholar
  63. Xue T, Peng B, Xue M, Zhong X, Chiu C-Y, Yang S, Qu Y, Ruan L, Jiang S, Dubin S, Kaner R, Zink J, Meyerhoff M, Duan X, Huang Y (2014) Integration of molecular and enzymatic catalysts on graphene for biomimetic generation of antithrombotic species. Nat Commun 5:3200Google Scholar
  64. Xuechao Y, Youde S, Tao L, Tao(Tom) W, Wang QJ (2015) Photocurrent generation in lateral graphene p–n junction created by electron-beam irradiation. Sci Rep 5:12014CrossRefGoogle Scholar
  65. Ying-Yan Z, Qing-Xiang P, Yiu-Wing M, Yuan-Tong G (2014) Temperature and strain-rate dependent fracture strength of graphynes. J Phys D Appl Phys 47(42):425301CrossRefGoogle Scholar
  66. Zan L, Genlian F, Qiang G, Zhiqiang L, Yishi S, Di Z (2015) Synergistic strengthening effect of graphene-carbon nanotube hybrid structure in aluminum matrix composites. Carbon 95:419–427CrossRefGoogle Scholar
  67. Zhang H, Wu J, He J, Zhang Z (2012a) Effect of hole size on the fracture of graphene nanomesh. In: Proceeding of the 19th European conference on fracture, ISBN 978-5-905576-18-8Google Scholar
  68. Zhang T, Li X, Kadkhodaei S, Gao H (2012b) Flaw insensitive fracture in nanocrystalline graphene. Nano Lett 12:4605–4610CrossRefGoogle Scholar
  69. Zhang Y, Zhao J, Wie N, Jiang J, Rabczuk T (2013) Effects of the dispersion of polymer wrapped two neighbouring single walled carbon nanotubes (SWNTs) on nanoengineering load transfer. Compos Part B Eng 45(1):1714–1721CrossRefGoogle Scholar
  70. Zhao H, Aluru N (2010) Temperature and strain-rate dependent fracture strength of graphene. J Appl Phys 108:064321CrossRefGoogle Scholar
  71. Zhao H, Min K, Aluru N (2009) Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 9(8):3012–3015CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • P. R. Budarapu
    • 1
  • B. Javvaji
    • 2
  • V. K. Sutrakar
    • 3
  • D. Roy Mahapatra
    • 2
  • M. Paggi
    • 1
  • G. Zi
    • 4
  • T. Rabczuk
    • 4
    • 5
  1. 1.IMT School for Advanced Studies LuccaLuccaItaly
  2. 2.Department of Aerospace EngineeringIndian Institute of ScienceBangaloreIndia
  3. 3.Aeronautical Development Agency, Defence Research and Development OrganizationBangaloreIndia
  4. 4.School of Civil, Environmental and Architectural EngineeringKorea UniversitySeoulKorea
  5. 5.Institute of Structural MechanicsBauhaus University of WeimarWeimarGermany

Personalised recommendations