Advertisement

International Journal of Fracture

, Volume 196, Issue 1–2, pp 189–206 | Cite as

Extended finite element method in computational fracture mechanics: a retrospective examination

  • N. Sukumar
  • J. E. Dolbow
  • N. Moës
Special Invited Article Celebrating IJF at 50

Abstract

In this paper, we provide a retrospective examination of the developments and applications of the extended finite element method (X-FEM) in computational fracture mechanics. Our main attention is placed on the modeling of cracks (strong discontinuities) for quasistatic crack growth simulations in isotropic linear elastic continua. We provide a historical perspective on the development of the method, and highlight the most important advances and best practices as they relate to the formulation and numerical implementation of the X-FEM for fracture problems. Existing challenges in the modeling and simulation of dynamic fracture, damage phenomena, and capturing the transition from continuum-to-discontinuum are also discussed.

Keywords

Elastic fracture Strong discontinuities Singularities Cracks Partition-of-unity enrichment X-FEM 

Notes

Acknowledgments

The authors are grateful to the late Professor Ted Belytschko, with whom they coauthored many of the initial contributions on the X-FEM. His research ideas and technical writing have influenced our thinking and has helped us to shape this article. We also thank Professors David Chopp and Brian Moran, who introduced us to level set methods. N.S. is grateful for the research support of the National Science Foundation through contract Grant CMMI-1334783 to the University of California at Davis. J.E.D. is grateful to the support from Sandia National Laboratories and Idaho National Laboratory, to Duke University; N.M. gratefully acknowledges the support of the ERC advanced Grant XLS No. 291102.

References

  1. Annavarapu C, Hautefeuille M, Dolbow JE (2014) A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part I: single interface. Comput Methods Appl Mech Eng 268:417–436CrossRefGoogle Scholar
  2. Areias PMA, Belytschko T (2006) A comment on the article ‘A finite element method for simulation of strong and weak discontinuities in solid mechanics’ by A. Hansbo and P. Hansbo [Computer Methods in Applied Mechanics and Engineering 2004; 193:3523–3540]. Computer Methods Appl Mech Eng 195:1275–1276Google Scholar
  3. Babuška I, Banerjee U (2012) Stable generalized finite element method (SGFEM). Comput Methods Appl Mech Eng 201:91–111CrossRefGoogle Scholar
  4. Babuška I, Melenk JM (1997) The partition of unity method. Int J Numer Methods Eng 40:727–758CrossRefGoogle Scholar
  5. Béchet E, Minnebo H, Moës N, Burgardt B (2005) Improved implementation and robustness study of the X-FEM for stress analysis around cracks. Int J Numer Methods Eng 64(8):1033–1056CrossRefGoogle Scholar
  6. Bellec J, Dolbow JE (2003) A note on enrichment functions for modeling crack nucleation. Commun Numer Methods Eng 19:921–932CrossRefGoogle Scholar
  7. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620CrossRefGoogle Scholar
  8. Belytschko T, Gracie R, Ventura G (2009) A review of extended/generalized finite element methods for materials modeling. Modell Simul Mater Sci Eng 17(4):043001CrossRefGoogle Scholar
  9. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47CrossRefGoogle Scholar
  10. Benthem JP (1977) State of stress at the vertex of a quarter-infinite crack in a half space. Int J Solids Struct 13:479–492CrossRefGoogle Scholar
  11. Benzley SE (1974) Representation of singularities with isoparametric finite elements. Int J Numer Methods Eng 8:537–545CrossRefGoogle Scholar
  12. Cano A, Moreno C (2015) A new method for numerical integration of singular functions on the plane. Numer Algorithms 68(3):547–568CrossRefGoogle Scholar
  13. Chessa J, Wang H, Belytschko T (2003) On the construction of blending elements for local partition of unity enriched finite elements. Int J Numer Methods Eng 57:1015–1038CrossRefGoogle Scholar
  14. Chevaugeon N, Moës N, Minnebo H (2013) Improved crack tip enrichment functions and integration for crack modelling using the eXtended Finite Element Method. Int J Multiscale Comput Eng 11(6):597–631CrossRefGoogle Scholar
  15. Colombo D, Massin P (2010) Fast and robust level set update for 3-D non planar X-FEM crack propagation modelling. Comput Methods Appl Mech Eng 200(25–28):2160–2180Google Scholar
  16. Comi C, Mariani S, Perego U (2007) An extended FE strategy for transition from continuum damage to mode I cohesive crack propagation. Int J Numer Anal Methods Geomech 31:213–238CrossRefGoogle Scholar
  17. Daux C, Moës N, Dolbow J, Sukumar N, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Methods Eng 48(12):1741–1760CrossRefGoogle Scholar
  18. Dolbow JE, Devan A (2004) Enrichment of enhanced assumed strain approximations for representing strong discontinuities: addressing volumetric incompressibility and the discontinuous patch test. Int J Numer Methods Eng 59:47–67CrossRefGoogle Scholar
  19. Duarte CA, Kim DJ (2008) Analysis and applications of a generalized finite element method with global–local enrichment functions. Comput Methods Appl Mech Eng 197:487–504CrossRefGoogle Scholar
  20. Duarte CAM, Babuška I, Oden JT (2000) Generalized finite element methods for three dimensional structural mechanics problems. Comput Struct 77(2):215–232CrossRefGoogle Scholar
  21. Duffy MG (1982) Quadrature over a pyramid or cube of integrands with a singularity at a vertex. SIAM J Numer Anal 19(6):1260–1262CrossRefGoogle Scholar
  22. Duflot M (2007) A study of the representation of cracks with level sets. Int J Numer Methods Eng 70(11):1261–1302CrossRefGoogle Scholar
  23. Duflot M, Bordas S (2008) A posteriori error estimation for extended finite elements by an extended global recovery. Int J Numer Methods Eng 76(8):1123–1138CrossRefGoogle Scholar
  24. Elguedj T, Gravouil A, Combescure A (2006) Appropriate extended functions for X-FEM simulation of plastic fracture mechanics. Comput Methods Appl Mech Eng 195(7–8):501–515CrossRefGoogle Scholar
  25. Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85:519–527CrossRefGoogle Scholar
  26. Ferté G, Massin P, Moës N (2014) Interface problems with quadratic X-FEM: design of a stable multiplier space and error analysis. Int J Numer Methods Eng 100(11):834–870CrossRefGoogle Scholar
  27. Fix G, Gulati S, Wakoff GI (1973) On the use of singular functions with the finite element method. J Comput Phys 13:209–228CrossRefGoogle Scholar
  28. Fleming M, Chu YA, Moran B, Belytschko T (1997) Enriched element-free Galerkin methods for crack tip fields. Int J Numer Methods Eng 40:1483–1504CrossRefGoogle Scholar
  29. Fries TP, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304Google Scholar
  30. Galenne E, Andrieux S, Ratier L (2007) A modal approach to linear fracture mechanics for dynamic loading at low frequency. J Sound Vib 299(1–2):283–297CrossRefGoogle Scholar
  31. Garzon J, O’Hara P, Duarte CA, Buttlar WG (2014) Improvements of explicit crack surface representation and update within the generalized finite element method with application to three-dimensional crack coalescence. Int J Numer Methods Eng 97(4):231–273CrossRefGoogle Scholar
  32. González-Albuixech VF, Giner E, Tarancón JE (2015) Modeling of the free border singularity in 3D cracks using XFEM and spherical harmonics. Revisita Internacional de Metodos Numericos para Calculo Y Diseno en Ingenieria 31:50–54CrossRefGoogle Scholar
  33. Gordeliy E, Peirce A (2015) Enrichment strategies and convergence properties of the XFEM for hydraulic fracture problems. Comput Methods Appl Mech Eng 283:474–502CrossRefGoogle Scholar
  34. Gosz M, Moran B (2002) An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three dimensions. Eng Fract Mech 69(3):299–319CrossRefGoogle Scholar
  35. Gravouil A, Moës N, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets–part II: level set update. Int J Numer Methods Eng 53(11):2569–2586CrossRefGoogle Scholar
  36. Griebel M, Schweitzer MA (2000) A particle-partition of unity method for the solution of elliptic, parabolic and hyperbolic PDEs. SIAM J Sci Comput 22(3):853–890CrossRefGoogle Scholar
  37. Gupta V, Duarte CA, Babuška I, Banerjee U (2015) Stable GFEM (SGFEM): improved conditioning and accuracy of GFEM/XFEM for three-dimensional fracture mechanics. Comput Methods Appl Mech Eng 289:355–386CrossRefGoogle Scholar
  38. Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193(33–35):3523–3540CrossRefGoogle Scholar
  39. Holdych DJ, Noble DR, Secor RB (2008) Quadrature rules for triangular and tetrahedral elements with generalized functions. Int J Numer Methods Eng 73(9):1310–1327CrossRefGoogle Scholar
  40. Huang R, Prévost J-H, Huang ZY, Suo Z (2003) Channel-cracking of thin films with the extended finite element method. Eng Fract Mech 70:2513–2526CrossRefGoogle Scholar
  41. Ji H, Dolbow JE (2004) On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method. Int J Numer Methods Eng 61:2508–2535CrossRefGoogle Scholar
  42. Jirásek M (2000) Comparative study on finite elements with embedded discontinuities. Comput Methods Appl Mech Eng 188(1):307–330CrossRefGoogle Scholar
  43. Jirásek M, Belytschko T (2002) Computational resolution of strong discontinuities. In: Wang HA, Rammerstorfer FG, Eberhardsteiner J (eds) Proceedings of fifth world congress on computational mechanics. WCCM V, Vienna University of Technology, AustriaGoogle Scholar
  44. Karoui A, Mansouri K, Renard Y, Arfaoui M (2014) The eXtended finite element method for cracked hyperelastic materials: a convergence study. Int J Numer Methods Eng 100(3):222–242CrossRefGoogle Scholar
  45. Laborde P, Pommier J, Renard Y, Salaün M (2005) High-order extended finite element method for cracked domains. Int J Numer Methods Eng 64(8):354–381CrossRefGoogle Scholar
  46. Legrain G, Moës N, Huerta A (2008) Stability of incompressible formulations enriched with X-FEM. Comput Methods Appl Mech Eng 197:1835–1849CrossRefGoogle Scholar
  47. Legrain G, Moës N, Verron E (2005) Stress analysis around crack tips in finite strain problems using the extended finite element method. Int J Numer Methods Eng 63(2):290–314CrossRefGoogle Scholar
  48. Li FZ, Shih CF, Needleman A (1985) A comparison of methods for calculating energy release rates. Eng Fract Mech 21(2):405–421CrossRefGoogle Scholar
  49. Linder C, Armero F (2007) Finite elements with embedded strong discontinuities for the modeling of failure in solids. Int J Numer Methods Eng 72:1391–1433CrossRefGoogle Scholar
  50. Melenk JM, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139:289–314CrossRefGoogle Scholar
  51. Menouillard T, Réthoré J, Moës N, Combescure A, Bung H (2008) Mass lumping strategies for X-FEM explicit dynamics: application to crack propagation. Int J Numer Methods Eng 74:447–474CrossRefGoogle Scholar
  52. Mergheim J, Kuhl E, Steinmann P (2005) A finite element method for the computational modelling of cohesive cracks. Int J Numer Methods Eng 63:276–289CrossRefGoogle Scholar
  53. Mergheim J, Kuhl E, Steinmann P (2007) Towards the algorithmic treatment of 3D strong discontinuities. Commun Numer Methods Eng 23:97–108CrossRefGoogle Scholar
  54. Minnebo H (2012) Three-dimensional integration strategies of singular functions introduced by the XFEM in the LEFM. Int J Numer Methods Eng 92:1117–1138CrossRefGoogle Scholar
  55. Moës N, Cloirec M, Cartraud P, Remacle J-F (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192:3163–3177CrossRefGoogle Scholar
  56. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150CrossRefGoogle Scholar
  57. Moës N, Gravouil A, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets–part I: mechanical model. Int J Numer Methods Eng 53(11):2549–2568CrossRefGoogle Scholar
  58. Moës N, Stolz C, Bernard P-E, Chevaugeon N (2011) A level set based model for damage growth: the thick level set approach. Int J Numer Methods Eng 86:358–380CrossRefGoogle Scholar
  59. Molino N, Bao Z, Fedkiw R (2004) A virtual node algorithm for changing mesh topology during simulation. ACM Trans Graph 23:285–392CrossRefGoogle Scholar
  60. Moran B, Shih CF (1987) Crack tip and associated domain integrals from momentum and energy balance. Eng Fract Mech 27(6):615–641CrossRefGoogle Scholar
  61. Mousavi SE, Sukumar N (2010a) Generalized Duffy transformation for integrating vertex singularities. Comput Mech 45(2–3):127–140CrossRefGoogle Scholar
  62. Mousavi SE, Sukumar N (2010b) Generalized Gaussian quadrature rules for discontinuities and crack singularities in the extended finite element method. Comput Methods Appl Mech Eng 199(49–52):3237–3249CrossRefGoogle Scholar
  63. Nakamura T, Parks DM (1989) Anti-symmetrical 3-D stress field near the crack front of a thin elastic plate. Int J Solids Struct 25(12):1411–1426CrossRefGoogle Scholar
  64. Nicaise S, Renard Y, Chahine E (2011) Optimal convergence analysis for the extended finite element method. Int J Numer Methods Eng 86:528–548CrossRefGoogle Scholar
  65. Pereira JPA, Kim D-J, Duarte CA (2011) A two-scale approach for the analysis of propagating three-dimensional fractures. Comput Mech 49(1):99–121CrossRefGoogle Scholar
  66. Réthoré J, Gravouil A, Combescure A (2005) An energy-conserving scheme for dynamic crack growth using the extended finite element method. Int J Numer Methods Eng 63(5):631–659CrossRefGoogle Scholar
  67. Richardson C, Hegemann J, Sifakis E, Hellrung J, Teran JM (2011) An xfem method for modeling geometrically elaborate crack propagation in brittle materials. Int J Numer Methods Eng 88(10):1042–1065CrossRefGoogle Scholar
  68. Rodenas JJ, González-Estrada OA, Tarancón JE, Fuenmayor FJ (2008) A recovery-type error estimator for the extended finite element method based on singular \(+\) smooth stress field splitting. Int J Numer Methods Eng 76:545–571CrossRefGoogle Scholar
  69. Schweitzer MA (2011) Stable enrichment and local preconditioning in the particle-partition of unity method. Numer Math 118:137–170CrossRefGoogle Scholar
  70. Schweitzer MA (2013) Variational mass lumping in the partition of unity method. SIAM J Sci Comput 35(2):A1073–A1097CrossRefGoogle Scholar
  71. Seabra MRR, Šuštarič P, Cesar de Sa JMA, Rodič T (2012) Damage driven crack initiation and propagation in ductile metals using XFEM. Comput Mech 52(1):161–179CrossRefGoogle Scholar
  72. Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, CambridgeGoogle Scholar
  73. Shi J, Chopp D, Lua J, Sukumar N, Belytschko T (2010) Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions. Eng Fract Mech 77(14):2840–2863CrossRefGoogle Scholar
  74. Shih CF, Moran B, Nakamura T (1986) Energy release rate along a three-dimensional crack front in a thermally stressed body. Int J Fract 30:79–102Google Scholar
  75. Siavelis M, Guiton M, Massin P, Moës N (2013) Large sliding contact along branched discontinuities with X-FEM. Comput Mech 52:201–219CrossRefGoogle Scholar
  76. Simo JC, Oliver J, Armero F (1993) An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Comput Mech 12:277–296CrossRefGoogle Scholar
  77. Simone A, Duarte CA, Van der Giessen E (2006) A generalized finite element method for polycrystals with discontinuous grain boundaries. Int J Numer Meth Eng 67:1122–1145CrossRefGoogle Scholar
  78. Simone A, Wells GN, Sluys LJ (2003) From continuous to discontinuous failure in a gradient-enhanced continuum damage model. Comput Methods Appl Mech Eng 192(41–42):4581–4607CrossRefGoogle Scholar
  79. Song J-H, Areias PMA, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng 67:868–893CrossRefGoogle Scholar
  80. Stolarska M, Chopp DL, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng 51(8):943–960CrossRefGoogle Scholar
  81. Strang G, Fix G (1973) An analysis of the finite element method. Prentice-Hall, Englewood CliffsGoogle Scholar
  82. Strouboulis T, Copps K, Babuška I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190(32–33):4081–4193CrossRefGoogle Scholar
  83. Sukumar N, Chopp DL, Béchet E, Moës N (2008) Three-dimensional non-planar crack growth by a coupled extended finite element and fast marching method. Int J Numer Meth Eng 76(5):727–748CrossRefGoogle Scholar
  84. Sukumar N, Chopp DL, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190(46–47):6183–6200CrossRefGoogle Scholar
  85. Sukumar N, Chopp DL, Moran B (2003) Extended finite element method and fast marching method for three-dimensional fatigue crack propagation. Eng Fract Mech 70(1):29–48CrossRefGoogle Scholar
  86. Sukumar N, Moës N, Moran B, Belytschko T (2000) Extended finite element method for three-dimensional crack modelling. Int J Numer Methods Eng 48(11):1549–1570CrossRefGoogle Scholar
  87. Sukumar N, Prévost J-H (2003) Modeling quasi-static crack growth with the extended finite element method. Part I: computer implementation. Int J Solids Struct 40(26):7513–7537CrossRefGoogle Scholar
  88. Tamayo-Mas E, Rodriguez-Ferran A (2015) A medial-axis-based model for propagating cracks in a regularised bulk. Int J Numer Methods Eng 101:489–520CrossRefGoogle Scholar
  89. Ventura G (2006) On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method. Int J Numer Meth Eng 66:761–795CrossRefGoogle Scholar
  90. Ventura G, Benvenuti E (2015) Equivalent polynomials for quadrature in Heaviside function enriched elements. Int J Numer Methods Eng 102(3–4):688–710CrossRefGoogle Scholar
  91. Wells GN, Sluys L (2001) A new method for modelling cohesive cracks using finite elements. Int J Numer Methods Eng 50(12):2667–2682CrossRefGoogle Scholar
  92. Yau JF, Wang SS, Corten HT (1980) A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. J Appl Mech 47:335–341CrossRefGoogle Scholar
  93. Zi G, Belytschko T (2003) New crack-tip elements for XFEM and applications to cohesive cracks. Int J Numer Methods Eng 57:2221–2240CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of CaliforniaDavisUSA
  2. 2.Department of Civil and Environmental EngineeringDuke UniversityDurhamUSA
  3. 3.GeM InstituteEcole Centrale de NantesNantesFrance

Personalised recommendations