International Journal of Fracture

, Volume 200, Issue 1–2, pp 49–62 | Cite as

Slant strained band development during flat to slant crack transition in AA 2198 T8 sheet: in situ 3D measurements

  • Ante Buljac
  • Thibault Taillandier-Thomas
  • Thilo F. Morgeneyer
  • Lukas Helfen
  • Stéphane Roux
  • François Hild
IUTAM Paris 2015


In this work 3D strain and damage analyses are performed in the immediate vicinity of the notch root of a flat CT-like specimen made of aluminum alloy. Experimental data, partially exploited by Morgeneyer et al. (Acta Mat 69:78–91, 2014b), were obtained by using synchrotron laminography and the 3D reconstructed volumes are subsequently analyzed via Digital volume correlation. These data enable for in situ assessments of strain fields and ductile damage in the zone where the stress triaxiality evolves from elevated to lower levels, which is accompanied by flat-to-slant crack transition. The measured strain field patterns in this area are analyzed herein in a systematic manner by studying the incremental strain activity during several loading steps. It is shown that from the very beginning of the loading history multiple slant strained bands appear in front of the notch root while the corresponding damage growth sets in at later loading stages and higher strains. The activity of the different strained bands at the notch root is alternating between different locations over the loading history. However, the band leading to final rupture is always active. The region where slant fracture occurs is identified to be in plane strain condition with respect to the crack propagation direction.


Damage Digital volume correlation Flat-to-slant transition Laminography Plasticity 



The financial support of the Fédération Francilienne de Mécanique and Agence Nationale de la Recherche (ANR-14-CE07-0034-02 Grant for COMINSIDE project) is gratefully acknowledged. Constellium C-Tech supplied the material. We acknowledge the European Synchrotron Radiation Facility for provision of beamtime at beamline ID19 (experiment MA1006).

Supplementary material

10704_2015_52_MOESM1_ESM.avi (3.6 mb)
Supplementary material 1 (avi 3717 KB)
10704_2015_52_MOESM2_ESM.avi (3.6 mb)
Supplementary material 2 (avi 3636 KB)
10704_2015_52_MOESM3_ESM.avi (3.5 mb)
Supplementary material 3 (avi 3538 KB)


  1. Altapova V, Helfen L, Myagotin A, Hänschke D, Moosmann J, Gunneweg J, Baumbach T (2012) Phase contrast laminography based on Talbot interferometry. Opt Express 20:6496–6508CrossRefGoogle Scholar
  2. Asserin-Lebert A, Besson J, Gourgues A (2005) Fracture of 6056 aluminum sheet materials: effect of specimen thickness and hardening behavior on strain localization and toughness. Mat Sci Eng A 395(1–2):186–194CrossRefGoogle Scholar
  3. Besnard G, Hild F, Roux S (2006) “Finite-element” displacement fields analysis from digital images: application to Portevin-Le Châtelier bands. Exp Mech 46:789–803CrossRefGoogle Scholar
  4. Besson J, McCowan C, Drexler E (2013) Modeling flat to slant fracture transition using the computational cell methodology. Eng Fract Mech 104:80–95CrossRefGoogle Scholar
  5. Bron F, Besson J (2006) Simulation of the ductile tearing for two grades of 2024 aluminum alloy thin sheets. Eng Fract Mech 73(11):1531–1552CrossRefGoogle Scholar
  6. Bron F, Besson J, Pineau A (2004) Ductile rupture in thin sheets of two grades of 2024 aluminum alloy. Mat Sci Eng A 380(1–2):356–364CrossRefGoogle Scholar
  7. Bull DJ, Helfen L, Sinclair I, Spearing SM, Baumbach T (2013) A synthesis of multi-scale 3D X-ray tomographic inspection techniques for assessing carbon fibre composite impact damage. Compos Sci Technol 75:55–61CrossRefGoogle Scholar
  8. Chen J (2011) Ductile tearing of AA2198 aluminium–lithium sheets for aeronautic application. Phd thesis, thèse d’UniversitéGoogle Scholar
  9. El-Naaman S, Nielsen K (2013) Observations on mode I ductile tearing in sheet metals. Eur J Mech A/Solids 42:54–62CrossRefGoogle Scholar
  10. Faleskog J, Barsoum I (2013) Tension–torsion fracture experiments-part I: experiments and a procedure to evaluate the equivalent plastic strain. Int J Solids Struct 50(25–26):4241–4257CrossRefGoogle Scholar
  11. Gurson A (1977) Continuum theory of ductile rupture by void nucleation and growth: part I - yield criterion and flow rules for porous ductile media. ASME J Eng Mat Techn 99:2–15CrossRefGoogle Scholar
  12. Helfen L, Baumbach T, Mikulík P, Kiel D, Pernot P, Cloetens P, Baruchel J (2005) High-resolution three-dimensional imaging of flat objects by synchrotron-radiation computed laminography. Appl Phys Lett 86(7):071915CrossRefGoogle Scholar
  13. Helfen L, Myagotin A, Pernot P, DiMichiel M, Mikulík P, Berthold A, Baumbach T (2006) Investigation of hybrid pixel detector arrays by synchrotron-radiation imaging. Nucl Instrum Method Phys Res B 563:163–166CrossRefGoogle Scholar
  14. Helfen L, Baumbach T, Cloetens P, Baruchel J (2009) Phase contrast and holographic computed laminography. Appl Phys Lett 94:104103CrossRefGoogle Scholar
  15. Helfen L, Myagotin A, Mikulík P, Pernot P, Voropaev A, Elyyan M, Di Michiel M, Baruchel J, Baumbach T (2011) On the implementation of computed laminography using synchrotron radiation. Rev Sci Instrum 82:063702CrossRefGoogle Scholar
  16. Helfen L, Morgeneyer T, Xu F, Mavrogordato M, Sinclair I, Schillinger B, Baumbach T (2012) Synchrotron and neutron laminography for three-dimensional imaging of devices and flat material specimens. Int J Mat Res 2:170–173CrossRefGoogle Scholar
  17. Hild F, Roux S (2012) Comparison of local and global approaches to digital image correlation. Exp Mech 52(9):1503–1519CrossRefGoogle Scholar
  18. Lan W, Deng X, Sutton MA, Chen C (2006) Study of slant fracture in ductile materials. Int J Fract 141:469–496CrossRefGoogle Scholar
  19. Landron C, Maire E, Adrien J, Suhonen H, Cloetens P, Bouaziz O (2012) Non-destructive 3-D reconstruction of the martensitic phase in a dual-phase steel using synchrotron holotomography. Scr Mater 66(12):1077–1080CrossRefGoogle Scholar
  20. Le Jolu T, Morgeneyer T, Denquin A, Sennour M, Laurent A, Besson J, Gourgues-Lorenzon AF (2014) Microstructural characterization of internal welding defects and their effect on the tensile behavior of FSW joints of AA2198 Al–Cu–Li Alloy. Metall Mater Trans A 45(12):5531–5544CrossRefGoogle Scholar
  21. Le Jolu T, Morgeneyer T, Denquin A, Gourgues-Lorenzon A (2015) Fatigue lifetime and tearing resistance of AA2198 Al–Cu–Li alloy friction stir welds: effect of defects. Int J Fatigue 70:463–472CrossRefGoogle Scholar
  22. Leclerc H, Périé J, Roux S, Hild F (2011) Voxel-scale digital volume correlation. Exp Mech 51(4):479–490CrossRefGoogle Scholar
  23. Lemaitre J (1992) A course on damage mechanics. Springer, BerlinCrossRefGoogle Scholar
  24. Lorthios J, Nguyen F, Gourgues AF, Morgeneyer T, Cugy P (2010) Damage observation in a high-manganese austenitic TWIP steel by synchrotron radiation computed tomography. Scr Mater 63(12):1220–1223CrossRefGoogle Scholar
  25. Mahgoub E, Deng X, Sutton M (2003) Three dimensional stress and deformation fields around flat and slant cracks under remote mode I loading conditions. Eng Fract Mech 70:2527–2542CrossRefGoogle Scholar
  26. Maire E, Withers PJ (2014) Quantitative X-ray tomography. Int Mater Rev 59(1):1–43CrossRefGoogle Scholar
  27. Maurel V, Helfen L, N’Guyen F, Köster A, Di Michiel M, Baumbach T, Morgeneyer T (2012) Three-dimensional investigation of thermal barrier coatings by synchrotron-radiation computed laminography. Scr Mater 66:471–474CrossRefGoogle Scholar
  28. Morgeneyer T, Helfen L, Sinclair I, Proudhon H, Xu F, Baumbach T (2011) Ductile crack initiation and propagation assessed via in situ synchrotron radiation computed laminography. Scr Mater 65:1010–1013CrossRefGoogle Scholar
  29. Morgeneyer T, Helfen L, Mubarak H, Hild F (2013) 3D digital volume correlation of synchrotron radiation laminography images of ductile crack initiation: an initial feasibility study. Exp Mech 53(4):543–556CrossRefGoogle Scholar
  30. Morgeneyer T, Proudhon H, Cloetens P, Ludwig W, Roirand Q, Laiarinandrasana L, Maire E (2014a) Nanovoid morphology and distribution in deformed HDPE studied by magnified synchrotron radiation holotomography. Polymer 55(25):6439–6443CrossRefGoogle Scholar
  31. Morgeneyer T, Taillandier-Thomas T, Helfen L, Baumbach T, Sinclair I, Roux S, Hild F (2014b) In situ 3D observation of early strain localisation during failure of thin Al alloy (2198) sheet. Acta Mater 69:78–91CrossRefGoogle Scholar
  32. Myagotin A, Voropaev A, Helfen L, Hänschke D, Baumbach T (2013) Efficient Volume Reconstruction for Parallel-Beam Computed Laminography by Filtered Backprojection on Multi-Core Clusters. IEEE Trans Image Process 22(12):5348–5361CrossRefGoogle Scholar
  33. Needleman A (2015) The effect of rate dependence on localization of deformation and failure in softening solids. J Appl Mech 82(2):021002CrossRefGoogle Scholar
  34. Needleman A, Rice J (1977) Limits to ductility set by plastic flow localization. In: Koistinen D, Wang N (eds) General motors research laboratories symposium, mechanics of sheet metal forming. Plenum Press, New York, pp 237–267Google Scholar
  35. Needleman A, Tvergaard V (1992) Analyses of plastic flow localization in metals. Appl Mech Rev 45(3S):S3–S18CrossRefGoogle Scholar
  36. Papasidero J, Doquet V, Mohr D (2014) Determination of the effect of stress state on the onset of ductile fracture through tension–torsion experiments. Exp Mech 54(2):137–151CrossRefGoogle Scholar
  37. Reischig P, Helfen L, Wallert A, Baumbach T, Dik J (2013) Non-invasive, three-dimensional x-ray imaging of paint layers. Appl Phys A 111:983–995CrossRefGoogle Scholar
  38. Roux S, Hild F, Viot P, Bernard D (2008) Three dimensional image correlation from X-ray computed tomography of solid foam. Comp Part A 39(8):1253–1265CrossRefGoogle Scholar
  39. Shen Y, Morgeneyer T, Garnier J, Allais L, Helfen L, Crépin J (2013) Three-dimensional quantitative in situ study of crack initiation and propagation in AA6061 aluminum alloy sheets via synchrotron laminography and finite-element simulations. Acta Mater 61(7):2571–2582CrossRefGoogle Scholar
  40. Taillandier-Thomas T, Roux S, Morgeneyer T, Hild F (2014) Localized strain field measurement on laminography data with mechanical regularization. Nucl Instrum Methods Phys Res B 324:70–79CrossRefGoogle Scholar
  41. Tekoğlu C, Hutchinson JW, Pardoen T (2015) On localization and void coalescence as a precursor to ductile fracture. Philos Trans R Soc Lond A: Math, Phys, Eng Sci 373(2038)Google Scholar
  42. Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32(1):157–169CrossRefGoogle Scholar
  43. Ueda T, Helfen L, Morgeneyer T (2014) In situ laminography study of three-dimensional individual void shape evolution at crack initiation and comparison with Gurson–Tvergaard–Needleman-type simulations. Acta Mater 78:254–270CrossRefGoogle Scholar
  44. Xu F, Helfen L, Baumbach T, Suhonen H (2012) Comparison of image quality in computed laminography and tomography. Opt Exp 20:794–806CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Ante Buljac
    • 1
    • 2
  • Thibault Taillandier-Thomas
    • 1
    • 2
  • Thilo F. Morgeneyer
    • 2
  • Lukas Helfen
    • 3
    • 4
  • Stéphane Roux
    • 1
  • François Hild
    • 1
  1. 1.Laboratoire de Mécanique et Technologie (LMT)ENS Cachan/CNRS/Université Paris-SaclayCachanFrance
  2. 2.MINES ParisTech, MAT-Centre des matériaux, CNRS UMR 7633PSL Research UniversityEvryFrance
  3. 3.ANKA/Institute for Photon Science and Synchrotron RadiationKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  4. 4.European Synchrotron Radiation Facility (ESRF)GrenobleFrance

Personalised recommendations