International Journal of Fracture

, Volume 194, Issue 2, pp 149–167 | Cite as

Capturing material toughness by molecular simulation: accounting for large yielding effects and limits

  • Laurent Brochard
  • György Hantal
  • Hadrien Laubie
  • Franz-Joseph Ulm
  • Roland J. M. Pellenq
Original Paper


The inherent computational cost of molecular simulations limits their use to the study of nanometric systems with potentially strong size effects. In the case of fracture mechanics, size effects due to yielding at the crack tip can affect strongly the mechanical response of small systems. In this paper we consider two examples: a silica crystal for which yielding is limited to a few atoms at the crack tip, and a nanoporous polymer for which the process zone is about one order of magnitude larger. We perform molecular simulations of fracture of those materials and investigate in particular the system and crack size effects. The simulated systems are periodic with an initial crack. Quasi-static loading is achieved by increasing the system size in the direction orthogonal to the crack while maintaining a constant temperature. As expected, the behaviors of the two materials are significantly different. We show that the behavior of the silica crystal is reasonably well described by the classical framework of linear elastic fracture mechanics (LEFM). Therefore, one can easily upscale engineering fracture properties from molecular simulation results. In contrast, LEFM fails capturing the behavior of the polymer and we propose an alternative analysis based on cohesive crack zone models. We show that with a linear decreasing cohesive law, this alternative approach captures well the behavior of the polymer. Using this cohesive law, one can anticipate the mechanical behavior at larger scale and assess engineering fracture properties. Thus, despite the large yielding of the polymer at the scale of the molecular simulation, the cohesive zone analysis offers a proper upscaling methodology.


Molecular simulation LEFM  Large yielding Cohesive zone 



Funding for this work through the X-Shale project enabled through MIT’s Energy Initiative, with sponsorship provided by Shell and Schlumberger, is greatly appreciated.


  1. Abraham FF, Broughton J (1998) Large-scale simulations of brittle and ductile failure in fcc crystals. Comput Mater Sci 10(1):1–9CrossRefGoogle Scholar
  2. Abraham FF, Walkup R, Gao H, Duchaineau M, De La Rubia TD, Seager M (2002) Simulating materials failure by using up to one billion atoms and the world’s fastest computer: work-hardening. Proc Natl Acad Sci 99(9):5783–5787CrossRefGoogle Scholar
  3. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, OxfordGoogle Scholar
  4. Anderson TL (2005) Fracture mechanics: fundamentals and applications. CRC Press, Boca RatonGoogle Scholar
  5. Ashby MF (2005) Materials selection in mechanical design, 3rd edn. Butterworth-Heinemann, OxfordGoogle Scholar
  6. Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7(1):55–129CrossRefGoogle Scholar
  7. Bazant ZP (1984) Size effect in blunt fracture: concrete, rock, metal. J Eng Mech 110(4):518–535CrossRefGoogle Scholar
  8. Belytschko T, Xiao S, Schatz G, Ruoff R (2002) Atomistic simulations of nanotube fracture. Phys Rev B 65(23):235,430CrossRefGoogle Scholar
  9. Bilby B, Cottrell A, Swinden K (1963) The spread of plastic yield from a notch. Proc R Soc Lond Ser A Math Phys Sci 272(1350):304–314CrossRefGoogle Scholar
  10. Bouchbinder E, Fineberg J, Marder M (2010) Dynamics of simple cracks. Ann Rev Condens Matter Phys 1(1):371–395CrossRefGoogle Scholar
  11. Buehler MJ, Gao H (2006) Dynamical fracture instabilities due to local hyperelasticity at crack tips. Nature 439(7074):307–310CrossRefGoogle Scholar
  12. Buehler MJ, van Duin AC, Goddard WA III (2006) Multiparadigm modeling of dynamical crack propagation in silicon using a reactive force field. Phys Rev Lett 96(9):095,505Google Scholar
  13. Buehler MJ, Tang H, van Duin AC, Goddard WA III (2007) Threshold crack speed controls dynamical fracture of silicon single crystals. Phys Rev Lett 99(16):165,502CrossRefGoogle Scholar
  14. Chenoweth K, Cheung S, Van Duin AC, Goddard WA, Kober EM (2005) Simulations on the thermal decomposition of a poly (dimethylsiloxane) polymer using the reaxff reactive force field. J Am Chem Soc 127(19):7192–7202CrossRefGoogle Scholar
  15. Cheung K, Yip S (1994) A molecular-dynamics simulation of crack-tip extension: the brittle-to-ductile transition. Modell Simul Mater Sci Eng 2(4):865CrossRefGoogle Scholar
  16. de Celis B, Argon AS, Yip S (1983) Molecular dynamics simulation of crack tip processes in alpha-iron and copper. J Appl Phys 54(9):4864–4878CrossRefGoogle Scholar
  17. Downs R, Palmer D (1994) The pressure behavior of a-cristobalite. Am Miner 79:9–14Google Scholar
  18. Dugdale D (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104CrossRefGoogle Scholar
  19. Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications. Academic press, LondonGoogle Scholar
  20. Gao H (2006) Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. Int J Fract 138(1–4):101–137CrossRefGoogle Scholar
  21. Garrison W Jr, Moody N (1987) Ductile fracture. J Phys Chem Solids 48(11):1035–1074CrossRefGoogle Scholar
  22. Gumbsch P, Zhou S, Holian B (1997) Molecular dynamics investigation of dynamic crack stability. Phys Rev B 55(6):3445CrossRefGoogle Scholar
  23. Hillerborg A, Modéer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6(6):773–781CrossRefGoogle Scholar
  24. Holian BL, Ravelo R (1995) Fracture simulations using large-scale molecular dynamics. Phys Rev B 51(17):11,275CrossRefGoogle Scholar
  25. Holland D, Marder M (1998) Ideal brittle fracture of silicon studied with molecular dynamics. Phys Rev Lett 80(4):746CrossRefGoogle Scholar
  26. Holland D, Marder M (1999) Cracks and atoms. Adv Mater 11(10):793–806CrossRefGoogle Scholar
  27. Hutchinson J (1968) Singular behaviour at the end of a tensile crack in a hardening material. J Mech Phys Solids 16(1):13–31CrossRefGoogle Scholar
  28. Isida M, Ushijima N, Kishine N (1981) Rectangular plates, strips and wide plates containing internal cracks under various boundary conditions. Trans Jpn Soc Mech Eng Part A 47:27–35CrossRefGoogle Scholar
  29. Jain SK, Pellenq RJM, Pikunic JP, Gubbins KE (2006) Molecular modeling of porous carbons using the hybrid reverse Monte Carlo method. Langmuir 22(24):9942–9948CrossRefGoogle Scholar
  30. Karihaloo B, Wang J (1997) On the solution of doubly periodic array of cracks. Mech Mater 26(4):209–212CrossRefGoogle Scholar
  31. Karihaloo B, Wang J, Grzybowski M (1996) Doubly periodic arrays of bridged cracks and short fibre-reinforced cementitious composites. J Mech Phys Solids 44(10):1565–1586CrossRefGoogle Scholar
  32. Kermode J, Albaret T, Sherman D, Bernstein N, Gumbsch P, Payne M, Csányi G, De Vita A (2008) Low-speed fracture instabilities in a brittle crystal. Nature 455(7217):1224–1227CrossRefGoogle Scholar
  33. Kermode J, Ben-Bashat L, Atrash F, Cilliers J, Sherman D, De Vita A (2013) Macroscopic scattering of cracks initiated at single impurity atoms. Nat Commun 4:2441CrossRefGoogle Scholar
  34. Kramer E, Berger L (1990) Fundamental processes of craze growth and fracture. In: Kausch HH (ed) Crazing in polymers vol. 2, advances in polymer science, vol 91/92, vol 2. Springer, Berlin, pp 1–68CrossRefGoogle Scholar
  35. Kröner E (1967) Elasticity theory of materials with long range cohesive forces. Int J Solids Struct 3(5):731–742CrossRefGoogle Scholar
  36. Langer J, Lobkovsky AE (1998) Critical examination of cohesive-zone models in the theory of dynamic fracture. J Mech Phys Solids 46(9):1521–1556CrossRefGoogle Scholar
  37. Lawn BR (1983) Physics of fracture. J Am Ceram Soc 66(2):83–91CrossRefGoogle Scholar
  38. Lucas J, Moody N, Robinson S, Hanrock J, Hwang R (1995) Determining fracture toughness of vitreous silica glass. Scr Metall Mater 32(5):743–748CrossRefGoogle Scholar
  39. Marder M (2004) Effects of atoms on brittle fracture. Int J Fract 130(2):517–555CrossRefGoogle Scholar
  40. Marder M, Gross S (1995) Origin of crack tip instabilities. J Mech Phys Solids 43(1):1–48CrossRefGoogle Scholar
  41. Mattoni A, Colombo L, Cleri F (2005) Atomic scale origin of crack resistance in brittle fracture. Phys Rev Lett 95(11):11,5501CrossRefGoogle Scholar
  42. Miller R, Tadmor E, Phillips R, Ortiz M (1998) Quasicontinuum simulation of fracture at the atomic scale. Modell Simul Mater Sci Eng 6(5):607CrossRefGoogle Scholar
  43. Nakano A, Kalia RK, Vashishta P (1994) Growth of pore interfaces and roughness of fracture surfaces in porous silica: Million particle molecular-dynamics simulations. Phys Rev Lett 73(17):2336CrossRefGoogle Scholar
  44. Nazmus Sakib A, Adnan A (2012) On the size-dependent critical stress intensity factor of confined brittle nanofilms. Eng Fract Mech 86:13–22CrossRefGoogle Scholar
  45. Oh ES, Walton JR, Slattery JC (2006) A theory of fracture based upon an extension of continuum mechanics to the nanoscale. J Appl Mech 73(5):792–798Google Scholar
  46. Pérez R, Gumbsch P (2000) Directional anisotropy in the cleavage fracture of silicon. Phys Rev Lett 84(23):5347CrossRefGoogle Scholar
  47. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19CrossRefGoogle Scholar
  48. Pugno NM, Ruoff RS (2004) Quantized fracture mechanics. Philos Mag 84(27):2829–2845CrossRefGoogle Scholar
  49. Rice JR, Thomson R (1974) Ductile versus brittle behaviour of crystals. Philos Mag 29(1):73–97CrossRefGoogle Scholar
  50. Rottler J (2009) Fracture in glassy polymers: a molecular modeling perspective. J Phys Condens Matter 21(46):463,101CrossRefGoogle Scholar
  51. Rottler J, Barsky S, Robbins MO (2002) Cracks and crazes: on calculating the macroscopic fracture energy of glassy polymers from molecular simulations. Phys Rev Lett 89(14):148,304CrossRefGoogle Scholar
  52. Sauer J, Hara M (1990) Effect of molecular variables on crazing and fatigue of polymers. In: Kausch HH (ed) Crazing in polymers vol 2, advances in polymer science, vol 91/92. Springer, Berlin, pp 69–118CrossRefGoogle Scholar
  53. Sinclair J (1975) The influence of the interatomic force law and of kinks on the propagation of brittle cracks. Philos Mag 31(3):647–671CrossRefGoogle Scholar
  54. Smith TL (1958) Dependence of the ultimate properties of a GR-S rubber on strain rate and temperature. J Polym Sci 32(124):99–113CrossRefGoogle Scholar
  55. Sneddon IN (1951) Fourier transforms. Dover, New YorkGoogle Scholar
  56. Swiler T (1994) Atomic-scale dynamic processes in the brittle fracture of silica. In: PhD thesis, University of FloridaGoogle Scholar
  57. Swiler TP, Simmons JH, Wright AC (1995) Molecular dynamics study of brittle fracture in silica glass and cristobalite. J Non-cryst Solids 182(1):68–77CrossRefGoogle Scholar
  58. Tada H, Paris PC, Irwin GR (2000) The stress analysis of cracks handbook. American Society of Mechanical Engineers, New YorkCrossRefGoogle Scholar
  59. Thomson R, Hsieh C, Rana V (1971) Lattice trapping of fracture cracks. J Appl Phys 42(8):3154–3160CrossRefGoogle Scholar
  60. Van Duin AC, Dasgupta S, Lorant F, Goddard WA (2001) Reaxff: a reactive force field for hydrocarbons. J Phys Chem A 105(41):9396–9409CrossRefGoogle Scholar
  61. Van Duin AC, Strachan A, Stewman S, Zhang Q, Xu X, Goddard WA (2003) Reaxffsio reactive force field for silicon and silicon oxide systems. J Phys Chem A 107(19):3803–3811CrossRefGoogle Scholar
  62. Ward IM, Sweeney J (2012) Mechanical properties of solid polymers. Wiley, New YorkCrossRefGoogle Scholar
  63. Watanabe K, Atsumi A (1972) Infinite row of parallel cracks in a strip. Int J Eng Sci 10(2):173–184CrossRefGoogle Scholar
  64. Zhang S, Zhu T, Belytschko T (2007) Atomistic and multiscale analyses of brittle fracture in crystal lattices. Phys Rev B 76(9):094,114CrossRefGoogle Scholar
  65. Zhou S, Lomdahl P, Thomson R, Holian B (1996) Dynamic crack processes via molecular dynamics. Phys Rev Lett 76(13):2318CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Laurent Brochard
    • 1
  • György Hantal
    • 2
    • 3
  • Hadrien Laubie
    • 2
  • Franz-Joseph Ulm
    • 2
  • Roland J. M. Pellenq
    • 2
  1. 1.Laboratoire Navier (UMR 8205), CNRS, ENPC, IFSTTARUniversité Paris-EstMarne-la-ValléeFrance
  2. 2.Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of Computational PhysicsUniversity of ViennaViennaAustria

Personalised recommendations