Advertisement

International Journal of Fracture

, Volume 193, Issue 2, pp 141–152 | Cite as

A self-affine geometrical model of dynamic RT-PMMA fractures: implications for fracture energy measurements

  • Jean-Benoit KoppEmail author
  • Jean Schmittbuhl
  • Olivier Noel
  • Christophe Fond
Original Paper

Abstract

Profilometric imaging of fracture surfaces of rubber toughened polymer has been performed at two different resolutions (a) at large scales [10 \(\upmu \)m–25 mm] using an opto-mechanical profilometer and (b) at small scales [0.195 \(\upmu \)m–0.48 mm] using an interferometric optical microscope. We introduced a self-affine geometrical model using two parameters: the Hurst exponent and the topothesy. We showed that for rubber toughened materials the approximation of the created surface by a mean flat plane leads to a poor estimation of the dynamic fracture energy \(G_{Idc}\). The description of the created rough fracture surface by a self-affine model is shown to provide a significantly better approximation. A new and original geometrical method is introduced to estimate self-affine parameters: the 3D surface scaling method. Hurst exponents are shown to be unique, \(\chi =0.6\pm 0.1\) for the different fracture zones and measurement scales. Topothesy ratios indicate a significant difference of fracture surface roughness amplitude depending on the observation resolution when the detrending technique is not correctly introduced.

Keywords

Dynamic fracture Polymers Surface roughness Self-affinity Hurst exponent Topothesy Fracture energy Rapid crack propagation 

Notes

Acknowledgments

The authors gratefully acknowledge the support of “Agence Nationale de la Recherche” and especially the collaborators of “Carenco”.

References

  1. Barabasi A-L, Stanley HE (1995) Fractal concepts in surface growth. Press Syndicate of the University of Cambridge, CambridgeCrossRefGoogle Scholar
  2. Bouchaud JP, Bouchaud E, Lapasset G, Planès J (1993) Models of fractal cracks. Phys Rev Lett 71:2240–2243CrossRefGoogle Scholar
  3. Bouchaud E, Lapasset G, Planès J, Naveos S (1995) Statistics of branched fracture surfaces. Phys Rev B 48(5):2917–2928CrossRefGoogle Scholar
  4. Bouchaud E (1997) Scaling properties of cracks. J Phys Condens Matter 9(21):4319–4344CrossRefGoogle Scholar
  5. Candela T, Renard F, Klinger Y, Mair K, Schmittbuhl J, Brodsky EE (2012) Roughness of fault surfaces over nine decades of length scales. J Geophys Res B Solid Earth 117:8CrossRefGoogle Scholar
  6. Candela T, Renard F, Bouchon M, Brouste A, Marsan D, Schmittbuhl J, Voisin C (2009) Characterization of fault roughness at various scales: implications of three-dimensional high resolution topography measurements. Pure Appl Geophys 166:1817–1851CrossRefGoogle Scholar
  7. Deumié C, Richier R, Dumas P, Amra C (1996) Multiscale roughness in optical multilayers: atomic force microscopy and light scattering. Appl Opt 35(28):5583–5594CrossRefGoogle Scholar
  8. Doll W (1976) Application of an energy balance and an energy method to dynamic crack propagation. J Appl Polym Sci 12(4):595–605Google Scholar
  9. Family F, Vicsek T (1985) Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model. J Phys A Math Gen 18(2):L75–L81CrossRefGoogle Scholar
  10. Feder J (1988) Fractals. Plenum Press, New YorkCrossRefGoogle Scholar
  11. Fond C, Schirrer R (2001) Dynamic Fracture Surface Energy and Branching Instabilities During Rapid Crack Propagation in Rubber Toughened PMMA. Notes au C R A S Ser IIb 329(3):195–200Google Scholar
  12. Guerrero C, Reyes E, Gonzalez V (2002) Fracture surface of plastic materials: the roughness exponent. Polymer 43(25):6683–6693CrossRefGoogle Scholar
  13. Hinojosa M, Gonzalez V, Sanchez J, Ortiz U (2004) Scaling properties of the fracture surfaces of a crystalline polymer. Polymer 45(14):4828–4836CrossRefGoogle Scholar
  14. Kobayashi A, Ohtani N, Munemura M (1980) Dynamic stress intensity factors during viscoelastic crack propagation at various strain rates. J Appl Polym Sci 25(12):2789–2793CrossRefGoogle Scholar
  15. Kopp J-B, Lin J, Schmittbuhl J, Fond C (2013) Correlation between the dynamic fracture surface energy GID and the amount of created surface. In: 13th international conference on fracture 2013, ICF 2013, 5, pp 4048–4056Google Scholar
  16. Kopp J-B, Lin J, Schmittbuhl J, Fond C (2014a) Longitudinal dynamic fracture of polymer pipes. Eur J Environ Civil Eng 18(10):1097–1105Google Scholar
  17. Kopp J-B, Schmittbuhl J, Noel O, Lin J, Fond C (2014b) Fluctuations of the dynamic fracture energy values related to the amount of created fracture surface. Eng Fract Mech 126:178–189Google Scholar
  18. Lapique F, Meakin P, Feder J, Jassang T (2002) Self-affine fractal scaling in fracture surfaces generated in ethylene and propylene polymers and copolymers. J Appl Polym Sci 86(4):973–983CrossRefGoogle Scholar
  19. Lopez JM, Schmittbuhl J (1998) Anomalous scaling of fracture surfaces. Phys Rev E 57(6):6405–6408CrossRefGoogle Scholar
  20. Maloy KJ, Hansen A, Hinrichsen EL, Roux S (1992) Experimental measurements of the roughness of brittle cracks. Phys Rev Lett 68:213–215CrossRefGoogle Scholar
  21. Mandelbrot BB (1982) The fractal geometry of nature. W.H.Freeman and Company, NewYorkGoogle Scholar
  22. Mandelbrot BB, Passoja DE, Paulay AJ (1984) Fractal character of fracture surfaces of metals. Nature 308:721–722CrossRefGoogle Scholar
  23. Meakin P (1998) Fractals: scaling and growth far from equilibrium. Press Syndicate of the University of Cambridge, CambridgeGoogle Scholar
  24. Morel S, Schmittbuhl J, Lopez JM, Valentin G (1998) Anomalous roughening of wood fractured surfaces. Phys Rev E 58:6999–7005CrossRefGoogle Scholar
  25. Mourot G, Morel S, Valentin G (2002) Comportement courbe-R d’un matériau quasi-fragile (le bois): influence de la forme des specimens d’essai. Colloque MATERIAUXGoogle Scholar
  26. Nilsson F (1972) Dynamic stress-intensity factors for finite strip problems. Int J Fract 8(4):403–411CrossRefGoogle Scholar
  27. Osovski S, Srivastava A, Ponson L, Bouchaud E, Tvergaard V, Ravi-Chandar K, Needleman A (2015) The effect of loading rate on ductile fracture toughness and fracture surface roughness. J Mech Phys Solids 76:20–46CrossRefGoogle Scholar
  28. Ponson L, Bonamy D, Auradou H, Mourot G, Morel S, Bouchaud E, Guillot C, Hulin JP (1992) Anisotropic self-affine properties of experimental fracture surfaces. Int J fract 140(1–4):27–37Google Scholar
  29. Scheibert J, Guerra C, Celarie F, Dalmas D, Bonamy D (2010) Brittle-quasibrittle transition in dynamic fracture: an energetic signature. Phys Rev Lett 104:045501-1–045501-4CrossRefGoogle Scholar
  30. Schmittbuhl J, Gentier S, Roux S (1993) Field measurements of the roughness of fault surfaces. Geophys Res Lett 20(8):639–641CrossRefGoogle Scholar
  31. Schmittbuhl J, Schmitt F, Scholz C (1995a) Scaling invariance of crack surfaces. J Geophys Res 100(B4):5953–5973CrossRefGoogle Scholar
  32. Schmittbuhl J, Vilotte J-P, Roux S (1995) Reliability of self-affine measurements. Phys Rev E 51(1):131–147CrossRefGoogle Scholar
  33. Schmittbuhl J, Chambon G, Hansen A, Bouchon M (2007) Are stress distributions along faults the signature of asperity squeeze. Geophys Res Lett 33:L-13307CrossRefGoogle Scholar
  34. Schmittbuhl J, Steyer A, Jouniaux L, Toussaint R (2008) Fracture morphology and viscous transport. Int J Rock Mech Min Sci 45(3):422–430CrossRefGoogle Scholar
  35. Sharon E, Fineberg J (1999) Confirming the continuum theory of dynamic brittle fracture for fast cracks. Nature 397:333–335CrossRefGoogle Scholar
  36. Simonsen I, Hansen A, Nes OM (1998) Determination of the Hurst exponent by use of wavelet transforms. Phys Rev E 58:2779–2787CrossRefGoogle Scholar
  37. Simonsen I, Vandembroucq D, Roux S (2000) Wave scattering from self-affine surfaces. Phys Rev E 61(5):5914–5917CrossRefGoogle Scholar
  38. Srivastava A, Ponson L, Osovski S, Bouchaud E, Tvergaard V, Needleman A (2014) Effect of inclusion density on ductile fracture toughness and roughness. J Mech Phys Solids 63(1):62–79CrossRefGoogle Scholar
  39. Williams JG (1972) Visco-elastic and thermal effects on crack growth in PMMA. Int J Fract 8(4):393–401Google Scholar
  40. Yoffe EH (1951) The moving griffith crack. Philos Mag 42:739–750CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jean-Benoit Kopp
    • 1
    Email author
  • Jean Schmittbuhl
    • 2
  • Olivier Noel
    • 3
  • Christophe Fond
    • 4
  1. 1.I2M, Université de Bordeaux, CNRSTalenceFrance
  2. 2.EOST, Université de Strasbourg, CNRSStrasbourgFrance
  3. 3.IMMM, Université du Maine, CNRSLe MansFrance
  4. 4.ICube, Université du Strasbourg, CNRSStrasbourgFrance

Personalised recommendations