International Journal of Fracture

, Volume 193, Issue 2, pp 117–130 | Cite as

Toughness measurement of thin films based on circumferential cracks induced at conical indentation

  • N. D. Madsen
  • S. Steffensen
  • H. M. JensenEmail author
  • J. Bøttiger
Original Paper


In the present study, circumferential ring cracks were produced in two types of alumina coatings under conical indentation. The alumina coatings were produced using reactive dual pulsed magnetron sputtering. The coatings were deposited at 150 and \(530\,^\circ \hbox {C}\) which resulted in coatings with hardness values of \(9.1\pm 0.2\) and \(20.7\pm 1.1\) GPa, respectively. The coating fractures were studied using scanning electron microscopy and the critical parameters for fracture: load, depth and crack radius, were determined for a range of coating thicknesses for both series. The crack behavior is compared to a numerical finite element model of the system. The model assumes the coating to be linear elastic while plasticity was included in the substrate. The critical parameters for different values of fracture toughness were extracted from the FEM stress field using closed-form expressions. The behavior of the simulated data and the experimental data was found to follow similar trends for all the investigated critical parameters. Furthermore, it was found that the critical load is the fracture parameter from which a measure for the fracture toughness is most accurately obtained. The hard coatings were observed to have higher fracture toughness than the softer coatings (200 vs. \(75 \, \hbox {J/m}^{2}\)).


Thin hard films Indentation-induced fracture Fracture toughness Ring cracks  Coating failure 



The authors would like to thank Vestas Wind Systems A/S, Hedeager 44, 8200 Aarhus N, Denmark for financial support.


  1. Abdul-Baqi A, der Giessen EV (2002) Numerical analysis of indentation induced cracking of brittle coatings on ductile substrates. Int J Solids Struct 39:1427–1442CrossRefGoogle Scholar
  2. Bathe K-J (1996) Finite element procedures, 1st edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  3. Beuth JL (1992) Cracking of thin bonded films in residual tension. Int J Solids Struct 29(13):1657–1675CrossRefGoogle Scholar
  4. Bull SJ (2011) Analysis methods and size effects in the indentation fracture toughness assessment of very thin oxide coatings on glass. C R Mec 339(7–8):518–531. doi: 10.1016/j.crme.2011.05.009 CrossRefGoogle Scholar
  5. Chai H, Lawn B, Wuttiphan S (1999) Fracture modes in brittle coatings with large interlayer modulus mismatch. J Mater Res 14(9):3805–3817Google Scholar
  6. Chai H, Lawn B (2004) Fracture mode transitions in brittle coatings on compliant substrates as function of thickness. J Mater Res 19(6):1752–1761CrossRefGoogle Scholar
  7. Chen Z, Cotterell B, Wang W (2002) The fracture of brittle thin films on compliant substrates in flexible displays. Eng Fract Mech 69(5):597–603. doi: 10.1016/S0013-7944(01)00104-7 CrossRefGoogle Scholar
  8. Courtney TH (1990) Mechanical behavior of materials, 1st edn. McGraw-Hill, New York CityGoogle Scholar
  9. Di Maio D, Roberts S (2011) Measuring fracture toughness of coatings using focused-ion-beam-machined microbeams. J Mater Res 20(02):299–302. doi: 10.1557/JMR.2005.0048 CrossRefGoogle Scholar
  10. Doege E, Meyer-Nolkemper H, Saeed I (1986) Fliesskurvenatlas metallischer Werkstoffe. Hanser, MünchenGoogle Scholar
  11. Fischercripps A (2006) Critical review of analysis and interpretation of nanoindentation test data. Surf Coat Technol 200(14–15):4153–4165. doi: 10.1016/j.surfcoat.2005.03.018 CrossRefGoogle Scholar
  12. Gao H, Huang Y, Nix WD, Hutchinson JW (1999) Mechanism-based strain gradient plasticity: I. Theory. J Mech Phys Solids 47:1239–1263CrossRefGoogle Scholar
  13. Guzman MSD, Newbauer G, Flinn P, Nix WD (1993) The role of indentation depth on the measured hardness of materials. Mater Res Symp Proc 308:613–618CrossRefGoogle Scholar
  14. Holmberg K, Laukkanen A, Ronkainen H, Wallin K, Varjus S (2003) A model for stresses, crack generation and fracture toughness calculation in scratched TiN-coated steel surfaces. Wear 254(3–4):278–291. doi: 10.1016/S0043-1648(02)00297-1 CrossRefGoogle Scholar
  15. Li X, Diaot D, Bhushans B (1997) Fracture mechanisms of thin amorphous carbon films in nanoindentation. Acta Mater 45(11):4453–4461CrossRefGoogle Scholar
  16. Ma Q, Clarke DR (1995) Size dependent hardness of silver single crystals. J Mater Res 10(4):853–863CrossRefGoogle Scholar
  17. McElhaney KW, Vlassak JJ, Nix WD (1998) Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J Mater Res 13(5):1300–1306CrossRefGoogle Scholar
  18. Morasch K, Bahr D (2007) An energy method to analyze through thickness thin film fracture during indentation. Thin Solid Films 515(6):3298–3304. doi: 10.1016/j.tsf.2006.01.043 CrossRefGoogle Scholar
  19. Nix WD (1989) Mechanical properties of thin films. Metall Trans A 20(11):2217–2245CrossRefGoogle Scholar
  20. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564CrossRefGoogle Scholar
  21. Poole WJ, Ashby MF, Fleck NA (1996) Micro-hardness of annealed and work-hardened copper polycrystals. Scr Mater 34(4):559–564CrossRefGoogle Scholar
  22. Quinn GD, Bradt RC (2007) On the Vickers indentation fracture toughness test. J Am Ceram Soc 90(3):673–680. doi: 10.1111/j.1551-2916.2006.01482.x CrossRefGoogle Scholar
  23. Ranade AN, Rama Krishna L, Li Z, Wang J, Korach CS, Chung Y-W (2012) Relationship between hardness and fracture toughness in Ti–\(TiB_2\) nanocomposite coatings. Surf Coat Technol 213:26–32. doi: 10.1016/j.surfcoat.2012.10.007 CrossRefGoogle Scholar
  24. Rouxel T, Ji H, Guin JP, Augereau F, Rufflé B (2010) Indentation deformation mechanism in glass: densification versus shear flow. J Appl Phys 107(9):094903. doi: 10.1063/1.3407559 CrossRefGoogle Scholar
  25. Schiffmann KI (2011) Determination of fracture toughness of bulk materials and thin films by nanoindentation: comparison of different models. Philos Mag 91(7–9):1163–1178. doi: 10.1080/14786435.2010.487984 CrossRefGoogle Scholar
  26. Sriram K, Narasimhan R, Biswas SK (2003) A numerical fracture analysis of indentation into thin hard films on soft substrates. Eng Fract Mech 70:1323–1338CrossRefGoogle Scholar
  27. Steffensen S, Madsen ND, Jensen HM (2013) Numerical estimation of fracture toughness from indentation-induced circumferential cracking in thin films on ductile substrates. Int J Solids Struct 50:3406–3417CrossRefGoogle Scholar
  28. Steffensen S, Jensen HM (2014) Energy release rate for circular crack due to indentation in a brittle film on a ductile substrate. Eur J Mech A Solids 43:133–141CrossRefGoogle Scholar
  29. Steffensen S, Jensen HM (2015) Circular channel cracks during indentation in thin films on ductile substrates. Comput Mater Sci 98:263–270CrossRefGoogle Scholar
  30. Stelmashenko NA, Walls MG, Brown LM, Milman YV (1993) Microindentation on w and mo oriented single crystals: an stm study. Acta Metall Mater 41(10):2855–2865CrossRefGoogle Scholar
  31. Tada H, Paris PC, Irwin GR (2000) The stress analysis of cracks handbook, 3rd edn. Professional Engineering Publishing, LondonCrossRefGoogle Scholar
  32. Vanimisetti SK, Narasimhan R (2007) A numerical analysis of flexure induced cylindrical cracks during indentation of thin hard films on soft substrates. Thin Solid Films 515:3277–3282CrossRefGoogle Scholar
  33. Weppelmann E, Swain MV (1996) Investigation of stresses and stress intensity factors responsible for fracture of thin protective films during ultra-micro indentation tests with spherical indenters. Thin Solid Films 286:111–121CrossRefGoogle Scholar
  34. Wiklund U, Bromark M, Larsson M, Hedenqvist P, Hogmark S (1997) Cracking resistance of thin hard coatings estimated by four-point bending. Surf Coat Technol 91(1–2):57–63. doi: 10.1016/S0257-8972(96)03123-4 CrossRefGoogle Scholar
  35. Zhang S, Sun D, Fu Y, Pei Y, De Hosson J (2005) Ni-toughened nc-TiN/a-SiNx nanocomposite thin films. Surf Coat Technol 200(5–6):1530–1534. doi: 10.1016/j.surfcoat.2005.08.080.38 CrossRefGoogle Scholar
  36. Zhang S, Zhang X (2012) Toughness evaluation of hard coatings and thin films. Thin Solid Films 520:2375–2389CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • N. D. Madsen
    • 1
  • S. Steffensen
    • 2
  • H. M. Jensen
    • 2
    Email author
  • J. Bøttiger
    • 1
  1. 1.Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
  2. 2.Department of Engineering (ENG)Aarhus UniversityAarhus CDenmark

Personalised recommendations