International Journal of Fracture

, Volume 189, Issue 1, pp 1–32 | Cite as

Quasi-static and dynamic fracture behaviour of rock materials: phenomena and mechanisms

Original Paper

Abstract

An experimental investigation is conducted to study the quasi-static and dynamic fracture behaviour of sedimentary, igneous and metamorphic rocks. The notched semi-circular bending method has been employed to determine fracture parameters over a wide range of loading rates using both a servo-hydraulic machine and a split Hopkinson pressure bar. The time to fracture, crack speed and velocity of the flying fragment are measured by strain gauges, crack propagation gauge and high-speed photography on the macroscopic level. Dynamic crack initiation toughness is determined from the dynamic stress intensity factor at the time to fracture, and dynamic crack growth toughness is derived by the dynamic fracture energy at a specific crack speed. Systematic fractographic studies on fracture surface are carried out to examine the micromechanisms of fracture. This study reveals clearly that: (1) the crack initiation and growth toughness increase with increasing loading rate and crack speed; (2) the kinetic energy of the flying fragments increases with increasing striking speed; (3) the dynamic fracture energy increases rapidly with the increase of crack speed, and a semi-empirical rate-dependent model is proposed; and (4) the characteristics of fracture surface imply that the failure mechanisms depend on loading rate and rock microstructure.

Keywords

Dynamic loading Rock materials Fracture behaviour Fracture toughness  Micromeasurement Failure mechanisms 

List of symbols

\(\hbox {a}\)

The notch length

\(A_\mathrm{B}\)

The cross-sectional area of the bar

\(A_\mathrm{S}\)

The cross-sectional area of fracture surface

\(A_\mathrm{I} (v)\)

The function of dynamic fracture

\(b\)

A material constant

\(\mathrm{B}\)

The thickness of the specimen

\(C_\mathrm{B}\)

Longitudinal wave speed of the bar

\(C_\mathrm{L}\)

Longitudinal wave speed

\(C_\mathrm{R}\)

Rayleigh wave speed

\(C_\mathrm{S}\)

Shear wave speed

\(D\)

Fractal dimensions

\(E\)

Elastic modulus

\(E_\mathrm{B}\)

Young’s modulus of the bar

\(G_\mathrm{C}\)

Quasi-static fracture energy

\(G_{\mathrm{dC}}\)

Dynamic fracture energy

\(G_\mathrm{d} (t,v)\)

Dynamic energy release rate

\(I\)

The moment of inertia

\(K_\mathrm{I}, \, K_\mathrm{I}^{\mathrm{dyn}} (t,v)\)

Quasi-static, dynamic stress intensity factor

\(K_{\mathrm{IC}}\)

Fracture toughness

\(K_{\mathrm{Id}}, K_{\mathrm{ID}}\)

Mode I dynamic crack initiation, growth toughness

\(K_{\mathrm{IIC}}, K_{\mathrm{IId}}\)

Mode II quasi-static, dynamic fracture toughness

\(\dot{K}_\mathrm{I}^{\mathrm{dyn}}\)

Dynamic loading rate

\(m\)

The mass of one fragment

\(P\)

The load applied on the specimen

\(P_{\max }\)

The peak applied load

\(r_{OO{'}}\)

Distance of the translational movement

\(\mathrm{R}\)

The specimen radius

\(\mathrm{2S}\)

The specimen span

\(t_\mathrm{f}\)

The time to fracture

\(T,\, T_{\mathrm{Rot.}},\, T_{\mathrm{Tra.}}\)

The total, rotational and translational kinetic energies

\(v_0\)

The theoretical characteristicvelocity

\(v\)

Crack speed

\(v_{\lim }\)

The limiting crack speed

\(v_{\max }\)

The maximum crack speed

\(v_\mathrm{T}\)

The translational velocity

\(V_{\mathrm{Str.}}\)

The striking impact speed

\(W_{\mathrm{In.}}, \, W_{\mathrm{Re.}}, W_{\mathrm{Tr.}}\)

The energies of the incident, reflected and transmitted wave

\(W_\mathrm{S}\)

The energy absorbed by the specimen

\(Y_\mathrm{I} (\mathrm{S}/R)\)

The mode-I geometry factor

\(\nu \)

The Poisson’s ratio

\(\xi \)

The covering length

\(N(\xi )\)

The total number of covering box

\(\delta \)

The critical distance

\(\delta _\mathrm{f}\)

The displacement of fracture

\(\sigma _{\mathrm{In.}},\, \sigma _{\mathrm{Re.}},\, \sigma _{\mathrm{Tr.}}\)

The stress measured by gauges on incident, reflected and transmitted bars

\(\omega \)

The angular velocity

\(\theta \)

The rotational angle

\(\rho \)

Density

\(\varOmega \)

The dissipated energy

References

  1. ASTM (2011) E1820–11 Standard test method for measurement of fracture toughness. Annual Book of ASTM Standards. ASTM International, West ConshohockenGoogle Scholar
  2. Atkinson BK (ed) (1987) Fracture mechanics of rock. Academic Press, LondonGoogle Scholar
  3. Atkinson C, Smelser RE, Sanchez J (1982) Combined mode fracture via the cracked Brazilian disk test. Int J Fract 18(4):279–291. doi:10.1007/bf00015688 Google Scholar
  4. Backers T, Fardin N, Dresen G, Stephansson O (2003) Effect of loading rate on mode I fracture toughness, roughness and micromechanics of sandstone. Int J Rock Mech Min 40(3):425–433. doi:10.1016/s1365-1609(03)00015-7 CrossRefGoogle Scholar
  5. Bazant ZP, Bai SP, Gettu R (1993) Fracture of rock: effect of loading rate. Eng Fract Mech 45(3):393–398. doi:10.1016/0013-7944(93)90024-m CrossRefGoogle Scholar
  6. Bertram A, Kalthoff JF (2003) Crack propagation toughness of rock for the range of low to very high crack speeds. Key Eng Mater 251–252:423–430. doi:10.4028/www.scientific.net/KEM.251-252.423 CrossRefGoogle Scholar
  7. Bieniawski ZT (1968) Fracture dynamics of rock. Int J Fract Mech 4(4):415–430. doi:10.1007/bf00186807 Google Scholar
  8. Bonamy D, Bouchaud E (2011) Failure of heterogeneous materials: a dynamic phase transition? Phys Rep 498(1):1–44. doi:10.1016/j.physrep.2010.07.006 CrossRefGoogle Scholar
  9. Cadoni E (2010) Dynamic characterization of orthogneiss rock subjected to intermediate and high strain rates in tension. Rock Mech Rock Eng 43(6):667–676. doi:10.1007/s00603-010-0101-x CrossRefGoogle Scholar
  10. Chen R, Xia K, Dai F, Lu F, Luo SN (2009) Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing. Eng Fract Mech 76(9):1268–1276. doi:10.1016/j.engfracmech.2009.02.001
  11. Clarke KC (1986) Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method. Comput Geosci 12(5):713–722. doi:10.1016/0098-3004(86)90047-6 CrossRefGoogle Scholar
  12. Clayton J (2010) Deformation, fracture, and fragmentation in brittle geologic solids. Int J Fract 163(1):151–172. doi:10.1007/s10704-009-9409-5 CrossRefGoogle Scholar
  13. Costin LS (1981) Static and dynamic fracture behaviour of oil shale. In: Freiman SW, Fuller ER (eds) Fracture mechanics for ceramics, rock and concrete, ASTM STP 745, vol 745. American Society for Testing and Materials, Philadelphia, pp 169–184CrossRefGoogle Scholar
  14. Curbach M, Eibl J (1990) Crack velocity in concrete. Eng Fract Mech 35(1–3):321–326. doi:10.1016/0013-7944(90)90210-8 CrossRefGoogle Scholar
  15. Dai F, Chen R, Iqbal MJ, Xia K (2010) Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters. Int J Rock Mech Min 47(4):606–613. doi:10.1016/j.ijrmms.2010.04.002 CrossRefGoogle Scholar
  16. Dai F, Chen R, Xia K (2010b) A semi-circular bend technique for determining dynamic fracture toughness. Exp Mech 50(6):783–791. doi:10.1007/s11340-009-9273-2 CrossRefGoogle Scholar
  17. Dai F, Xia K, Zheng H, Wang YX (2011) Determination of dynamic rock mode-I fracture parameters using cracked chevron notched semi-circular bend specimen. Eng Fract Mech 78(15):2633–2644. doi:10.1016/j.engfracmech.2011.06.022 CrossRefGoogle Scholar
  18. Dally JW, Fourney WL, Irwin GR (1985) On the uniqueness of the stress intensity factor-crack velocity relationship. Int J Fract 27(3):159–168. doi:10.1007/bf00017965 CrossRefGoogle Scholar
  19. Du J, Yon JH, Hawkins NM, Arakawa K, Kobayashi AS (1992) Fracture process zone for concrete for dynamic loading. ACI Matert J 89(3):252–258Google Scholar
  20. Eremenko A, Novikov S, Sinitsyn V, Pushkov V, Yakupov M (1996) Determination of fracture toughness and fracture energy of brittle materials under impact wedging. J Appl Mech Tech Phys 37(4):586–594. doi:10.1007/bf02369738 CrossRefGoogle Scholar
  21. Field J (1971) Brittle fracture: its study and application. Contemp Phys 12(1):1–31. doi:10.1080/00107517108205103 CrossRefGoogle Scholar
  22. Fischer MP, Elsworth D, Alleyamp RB, Engelder T (1996) Finite element analysis of the modified ring test for determining mode I fracture toughness. Int J Rock Mech Min 33(5):1–15. doi:10.1016/0148-9062(96)89926-8 CrossRefGoogle Scholar
  23. Forquin P (2012) An optical correlation technique for characterizing the crack velocity in concrete. Eur Phys J Spec Top 206:89–95. doi:10.1140/epjst/e2012-01590-6 CrossRefGoogle Scholar
  24. Foster JT, Chen W, Luk VK (2011) Dynamic crack initiation toughness of 4340 steel at constant loading rates. Eng Fract Mech 78(6):1264–1276. doi:10.1016/j.engfracmech.2011.02.019 CrossRefGoogle Scholar
  25. Fowell RJ (1995) Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens. Int J Rock Mech Min 32(1):57–64. doi:10.1016/0148-9062(94)00015-u CrossRefGoogle Scholar
  26. Fujimura A, Takagi Y, Furumoto M, Mizutani H (1986) Fractal dimensions of fracture surfaces of rock fragments. Mem Natl Inst Polar Res Spec Publ 41:348–357Google Scholar
  27. Gong FQ, Zhao GF (2014) Dynamic indirect tensile strength of sandstone under different loading rates. Rock Mech Rock Eng 1–8. doi:10.1007/s00603-013-0503-7
  28. Hoek E, Bieniawski ZT (1965) Brittle fracture propagation in rock under compression. Int J Fract Mech 1(3):137–155. doi:10.1007/bf00186851 Google Scholar
  29. Hogan JD, Rogers RJ, Spray JG, Boonsue S (2012) Dynamic fragmentation of granite for impact energies of 6–28. J Eng Fract Mech 79:103–125. doi:10.1016/j.engfracmech.2011.10.006 CrossRefGoogle Scholar
  30. Hu G, Ramesh KT, Cao B, McCauley JW (2011) The compressive failure of aluminum nitride considered as a model advanced ceramic. J Mech Phys Solids 59(5):1076–1093. doi:10.1016/j.jmps.2011.02.003 CrossRefGoogle Scholar
  31. Jiang F, Vecchio KS (2009) Hopkinson bar loaded fracture experimental technique: a critical review of dynamic fracture toughness tests. Appl Mech Rev 62(6):060802–060839. doi:10.1115/1.3124647 CrossRefGoogle Scholar
  32. Ju Y, Sudak L, Xie H (2007) Study on stress wave propagation in fractured rocks with fractal joint surfaces. Int J Sol Struct 44(13):4256–4271. doi:10.1016/j.ijsolstr.2006.11.015 CrossRefGoogle Scholar
  33. Kalthoff JF (1986) Fracture behavior under high rates of loading. Eng Fract Mech 23(1):289–298. doi:10.1016/0013-7944(86)90193-1 CrossRefGoogle Scholar
  34. Kim Y, Chao Y (2007) Effect of loading rate on dynamic fracture initiation toughness of brittle materials. Int J Fract 145(3):195–204. doi:10.1007/s10704-007-9114-1 CrossRefGoogle Scholar
  35. Kipp ME, Grady DE, Chen EP (1980) Strain-rate dependent fracture initiation. Int J Fract 16(5):471–478. doi:10.1007/bf00016585 CrossRefGoogle Scholar
  36. Klepaczko JR, Bassim MN, Hsu TR (1984) Fracture toughness of coal under quasi-static and impact loading. Eng Fract Mech 19(2):305–316. doi:10.1016/0013-7944(84)90025-0 CrossRefGoogle Scholar
  37. Kranz RL (1983) Microcracks in rocks: a review. Tectonophysics 100(1–3):449–480. doi:10.1016/0040-1951(83)90198-1 CrossRefGoogle Scholar
  38. Kuruppu MD (1997) Fracture toughness measurement using chevron notched semi-circular bend specimen. Int J Fract 86(4):L33–L38Google Scholar
  39. Kuruppu MD, Obara Y, Ayatollahi MR, Chong KP, Funatsu T (2014) ISRM-Suggested method for determining the mode I static fracture toughness using semi-circular bend specimen. Rock Mech Rock Eng 47(1):267–274. doi:10.1007/s00603-013-0422-7 CrossRefGoogle Scholar
  40. Lagunov VA, Mambetov SA (1965) The rate of growth of cracks in rock specimens. J Appl Mech Tech Phys 6(6):64–66. doi:10.1007/bf00919315 CrossRefGoogle Scholar
  41. Lambert DE, Ross AC (2000) Strain rate effects on dynamic fracture and strength. Int J Impact Eng 24(10):985–998. doi:10.1016/s0734-743x(00)00027-0 CrossRefGoogle Scholar
  42. Lawn B (1993) Fracture of brittle solids. Cambridge University Press, LondonCrossRefGoogle Scholar
  43. Li X, Zou Y, Zhou Z (2014) Numerical simulation of the rock SHPB test with a special shape striker based on the discrete element method. Rock Mech Rock Eng 1–17. doi:10.1007/s00603-013-0484-6
  44. Li XB, Lok TS, Zhao J (2005) Dynamic characteristics of granite subjected to intermediate loading rate. Rock Mech Rock Eng 38(1):21–39. doi:10.1007/s00603-004-0030-7 CrossRefGoogle Scholar
  45. Lim IL, Johnston IW, Choi SK (1993) Stress intensity factors for semi-circular specimens under three-point bending. Eng Fract Mech 44(3):363–382. doi:10.1016/0013-7944(93)90030-v CrossRefGoogle Scholar
  46. Liu C, Knauss WG, Rosakis AJ (1998) Loading rates and the dynamic initiation toughness in brittle solids. Int J Fract 90(1):103–118. doi:10.1023/a:1007447603177 CrossRefGoogle Scholar
  47. Liu CP, Duan QQ (2009) Meso-structure analysis on instability of dynamic fracture in rock. In: Fourth international conference on experimental mechanics, Singapore, vol 1. SPIE, p 752210. doi:10.1117/12.851493
  48. Liu CP, Ju Y, Duan QQ (2010) Influence of internal characteristic length scale on dynamic crack propagating mechanism in rock materials. Rock Soil Mech 31(Suppl. 1):91–95Google Scholar
  49. Lundberg B (1976) A split Hopkinson bar study of energy absorption in dynamic rock fragmentation. Int J Rock Mech Min Sci Geomech Abstr 13(6):187–197. doi:10.1016/0148-9062(76)91285-7 CrossRefGoogle Scholar
  50. Mecholsky JJ, Mackin TJ (1988) Fractal analysis of fracture in Ocala chert. J Mater Sci Lett 7(11):1145–1147. doi:10.1007/bf00722319 CrossRefGoogle Scholar
  51. Mindess S, Banthia N, Yan C (1987) The fracture toughness of concrete under impact loading. Cem Concr Res 17(2):231–241. doi:10.1016/0008-8846(87)90106-2 CrossRefGoogle Scholar
  52. Nakano M, Kishida K, Yamauchi Y, Sogabe Y (1994) Dynamic fracture initiation in brittle materials under combined mode I/II loading. J Phys IV France 04(C8):C8–695–C698-700. doi:10.1051/jp4:19948106 Google Scholar
  53. Nara Y, Takada M, Mori D, Owada H, Yoneda T, Kaneko K (2010) Subcritical crack growth and long-term strength in rock and cementitious material. Int J Fract 164(1):57–71. doi:10.1007/s10704-010-9455-z CrossRefGoogle Scholar
  54. Nasseri MHB, Mohanty B (2008) Fracture toughness anisotropy in granitic rocks. Int J Rock Mech Min 45(2):167–193. doi:10.1016/j.ijrmms.2007.04.005 CrossRefGoogle Scholar
  55. Norton MG, Atkinson BK (1981) Stress-dependent morphological features on fracture surfaces of quartz and glass. Tectonophysics 77(3–4):283–295. doi:10.1016/0040-1951(81)90267-5 CrossRefGoogle Scholar
  56. Ouchterlony F (1988) Suggested methods for determining the fracture toughness of rock. Int J Rock Mech Min 25(2):71–96. doi:10.1016/0148-9062(88)91871-2 Google Scholar
  57. Ponson L, Auradou H, Pessel M, Lazarus V, Hulin JP (2007) Failure mechanisms and surface roughness statistics of fractured Fontainebleau sandstone. Phys Rev E 76(3):036108. doi:10.1103/PhysRevE.76.036108 CrossRefGoogle Scholar
  58. Ravi-Chandar K (2004) Dynamic fracture. Elsevier Science, AmsterdamGoogle Scholar
  59. Ravi-Chandar K, Knauss WG (1984a) An experimental investigation into dynamic fracture: I. Crack initiation and arrest. Int J Fract 25(4):247–262. doi:10.1007/bf00963460 CrossRefGoogle Scholar
  60. Ravi-Chandar K, Knauss WG (1984b) An experimental investigation into dynamic fracture: II. Microstructural aspects. Int J Fract 26(1):65–80. doi:10.1007/bf01152313 CrossRefGoogle Scholar
  61. Ravi-Chandar K, Knauss WG (1984c) An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching. Int J Fract 26(2):141–154. doi:10.1007/bf01157550 CrossRefGoogle Scholar
  62. Ravi-Chandar K, Yang B (1997) On the role of microcracks in the dynamic fracture of brittle materials. J Mech Phys Solids 45(4):535–563. doi:10.1016/s0022-5096(96)00096-8 CrossRefGoogle Scholar
  63. Rose LRF (1986) Effective fracture toughness of microcracked materials. J Am Ceram Soc 69(3):212–214. doi:10.1111/j.1151-2916.1986.tb07409.x CrossRefGoogle Scholar
  64. Schubnel A, Fortin J, Burlini L, Guéguen Y (2005) Damage and recovery of calcite rocks deformed in the cataclastic regime. Geol Soc London Spec Publ 245(1):203–221. doi:10.1144/gsl.sp.2005.245.01.10 CrossRefGoogle Scholar
  65. Schuler H, Mayrhofer C, Thoma K (2006) Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates. Int J Impact Eng 32(10):1635–1650. doi:10.1016/j.ijimpeng.2005.01.010 CrossRefGoogle Scholar
  66. Schultz R, Jensen M, Bradt R (1994) Single crystal cleavage of brittle materials. Int J Fract 65(4):291–312. doi:10.1007/bf00012370 CrossRefGoogle Scholar
  67. Tang CA, Xu XH (1990) A new method for measuring dynamic fracture toughness of rock. Eng Fract Mech 35(4–5):783–791. doi:10.1016/0013-7944(90)90162-a CrossRefGoogle Scholar
  68. Thompson A, Knott J (1993) Micromechanisms of brittle fracture. Metall Mater Trans A 24(3):523–534. doi:10.1007/bf02656622 CrossRefGoogle Scholar
  69. Wang QZ, Feng F, Ni M, Gou XP (2011) Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar. Eng Fract Mech 78(12):2455–2469. doi:10.1016/j.engfracmech.2011.06.004 CrossRefGoogle Scholar
  70. Wang QZ, Zhang S, Xie HP (2010) Rock dynamic fracture toughness tested with holed-cracked flattened Brazilian discs diametrically impacted by SHPB and its size effect. Exp Mech 50(7):877–885. doi:10.1007/s11340-009-9265-2 CrossRefGoogle Scholar
  71. Wong LNY, Zou C, Cheng Y (2014) Fracturing and failure behavior of Carrara marble in quasistatic and dynamic Brazilian disc tests. Rock Mech Rock Eng 47(4):1117–1133. doi:10.1007/s00603-013-0465-9 CrossRefGoogle Scholar
  72. Xia K, Huang S, Dai F (2013) Evaluation of the frictional effect in dynamic notched semi-circular bend tests. Int J Rock Mech Min 62:148–151. doi:10.1016/j.ijrmms.2013.06.001 Google Scholar
  73. Xie H, Sanderson D (1995) Fractal effects of crack propagation on dynamic stress intensity factors and crack velocities. Int J Fract 74(1):29–42. doi:10.1007/bf00018573 CrossRefGoogle Scholar
  74. Xie H, Wang J (1999) Direct fractal measurement of fracture surfaces. Int J Solids Struct 36(20):3073–3084. doi:10.1016/s0020-7683(98)00141-3 CrossRefGoogle Scholar
  75. Yang RS, Yue ZW, Sun ZH, Xiao TS, Guo DM (2009) Dynamic fracture behavior of rock under impact load using the caustics method. Min Sci Technol 19(1):79–83. doi:10.1016/s1674-5264(09)60015-6 Google Scholar
  76. Yin ZQ, Li XB, Jin JF, He XQ, Du K (2012) Failure characteristics of high stress rock induced by impact disturbance under confining pressure unloading. Trans Nonferr Metal Soc 22(1):175–184. doi:10.1016/s1003-6326(11)61158-8 CrossRefGoogle Scholar
  77. Yu Y, Zhang ZX (1995) Determining critical time of rock dynamic fracture by dynamic Moire method. J Univ Sci Technol Beijing 2(2):109–113Google Scholar
  78. Zhang QB, Zhao J (2013a) Effect of loading rate on fracture toughness and failure micromechanisms in marble. Eng Fract Mech 102:288–309. doi:10.1016/j.engfracmech.2013.02.009
  79. Zhang QB, Zhao J (2013b) Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads. Int J Rock Mech Min 60:423–439. doi:10.1016/j.ijrmms.2013.01.005
  80. Zhang QB, Zhao J (2014) A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng 47(4):1411–1478. doi:10.1007/s00603-013-0463-y CrossRefGoogle Scholar
  81. Zhang XP, Wong LNY (2013) Loading rate effects on cracking behavior of flaw-contained specimens under uniaxial compression. Int J Fract 180(1):93–110. doi:10.1007/s10704-012-9803-2 CrossRefGoogle Scholar
  82. Zhang XX, Yu RC, Ruiz G, Tarifa M, Camara MA (2010) Effect of loading rate on crack velocities in HSC. Int J Impact Eng 37(4):359–370. doi:10.1016/j.ijimpeng.2009.10.002 CrossRefGoogle Scholar
  83. Zhang ZX, Kou SQ, Jiang LG, Lindqvist PA (2000) Effects of loading rate on rock fracture: fracture characteristics and energy partitioning. Int J Rock Mech Min 37(5):745–762. doi:10.1016/s1365-1609(00)00008-3 CrossRefGoogle Scholar
  84. Zhang ZX, Kou SQ, Yu J, Yu Y, Jiang LG, Lindqvist PA (1999) Effects of loading rate on rock fracture. Int J Rock Mech Min 36(5):597–611. doi:10.1016/s0148-9062(99)00031-5 CrossRefGoogle Scholar
  85. Zhang ZX, Yu J, Kou SQ, Lindqvist PA (2001) On study of influences of loading rate on fractal dimensions of fracture surfaces in gabbro. Rock Mech Rock Eng 34(3):235–242. doi:10.1007/s006030170011 CrossRefGoogle Scholar
  86. Zhao J, Zhou YX, Hefny AM, Cai JG, Chen SG, Li HB, Liu JF, Jain M, Foo ST, Seah CC (1999) Rock dynamics research related to cavern development for ammunition storage. Tunn Undergr Space Technol 14(4):513–526. doi:10.1016/s0886-7798(00)00013-4 CrossRefGoogle Scholar
  87. Zhao Y, Zhao G-F, Jiang Y (2013) Experimental and numerical modelling investigation on fracturing in coal under impact loads. Int J Fract 183(1):63–80. doi:10.1007/s10704-013-9876-6 CrossRefGoogle Scholar
  88. Zhou F, Molinari J-F, Shioya T (2005) A rate-dependent cohesive model for simulating dynamic crack propagation in brittle materials. Eng Fract Mech 72(9):1383–1410. doi:10.1016/j.engfracmech.2004.10.011
  89. Zhou HW, Xie H (2003) Direct estimation of the fractal dimensions of a fracture surface of rock. Surf Rev Lett 10(5):751–762. doi:10.1142/S0218625X03005591 CrossRefGoogle Scholar
  90. Zhou YX, Xia K, Li XB, Li HB, Ma GW, Zhao J, Zhou ZL, Dai F (2012) Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min 49:105–112. doi:10.1016/j.ijrmms.2011.10.004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Laboratory of Rock Mechanics (LMR), School of Architecture, Civil and Environmental Engineering (ENAC)École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Department of Civil EngineeringMonash UniversityMelbourneAustralia

Personalised recommendations