Advertisement

International Journal of Fracture

, Volume 176, Issue 2, pp 195–206 | Cite as

The formulation and computation of the nonlocal J-integral in bond-based peridynamics

  • Wenke Hu
  • Youn Doh Ha
  • Florin Bobaru
  • Stewart A. Silling
Original Paper

Abstract

This work presents a rigorous derivation for the formulation of the J-integral in bond-based peridynamics using the crack infinitesimal virtual extension approach. We give a detailed description of an algorithm for computing this nonlocal version of the J-integral. We present convergence studies (m-convergence and δ-convergence) for two different geometries: a single edge-notch configuration and a double edge-notch sample. We compare the results with results based on the classical J-integral and obtained from FEM calculations that employ special elements near the crack tip. We identify the size of the nonlocal region for which the peridynamic J-integral value is near the classical FEM solutions. We discuss how the boundary conditions and the peridynamic “skin effect” may influence the peridynamic J-integral value. We also observe, computationally, the path-independence of the peridynamic J-integral.

Keywords

J-integral Peridynamics Nonlocal methods Path-independence Fracture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bobaru F (2007) Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofiber networks: a peridynamic approach. Model Simul Mater Sci Eng 15: 397–417CrossRefGoogle Scholar
  2. Bobaru F, Duangpanya M (2010) The peridynamic formulation for transient heat conduction. Int J Heat Mass Transfer 53: 4047–4059CrossRefGoogle Scholar
  3. Bobaru F, Duangpanya M (2012) A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities. J Comput Phys 231(7): 2764–2785CrossRefGoogle Scholar
  4. Bobaru F, Ha YD (2011) Adaptive refinement and multiscale modeling in 2D peridynamics. Int J Mult Comput Eng 9(6): 635–660CrossRefGoogle Scholar
  5. Bobaru F, Hu W (2012) The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. Int J Fract. doi: 10.1007/s10704-012-9725-z
  6. Bobaru F, Yang M, Alves LF, Silling SA, Askari E, Xu J (2009) Convergence, adaptive refinement, and scaling in 1D peridynamics. Int J Numer Meth Eng 77(6): 852–877CrossRefGoogle Scholar
  7. Foster JT, Silling SA, Chen WW (2010) Viscoplasticity using peridynamics. Int J Numer Meth Eng 81: 1242–1258Google Scholar
  8. Foster J, Silling SA, Chen WW (2011) An energy based failure criterion for use with peridynamic states. Int J Mult Comp Eng 9: 675–688CrossRefGoogle Scholar
  9. Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162: 229–244CrossRefGoogle Scholar
  10. Ha YD, Bobaru F (2011) Characteristics of dynamic brittle fracture captured with peridynamics. Eng Fract Mech 78: 1156–1168CrossRefGoogle Scholar
  11. Hu W, Ha YD, Bobaru F (2012) Peridynamic simulations of dynamic fracture in unidirectional fiber-reinforced composites. Comput Methods Appl Mech Eng. 217–220: 247–261Google Scholar
  12. Hu W, Ha YD, Bobaru F (2011) Modeling dynamic fracture and damage in fiber-reinforced composites with peridynamics. Int J Mult Comput Eng 9: 707–726CrossRefGoogle Scholar
  13. Hutchinson JW (1968) Singular behavior at the end of a tensile crack tip in a hardening material. J Mech Phys Solids 16: 13–31CrossRefGoogle Scholar
  14. Kilic B (2008) Peridynamic theory for progressive failure prediction in homogeneous and heterogeneous materials. Ph.D. thesis, Department of Aerospace and Mechanical Engineering, University of Arizona, pp 68Google Scholar
  15. Kilic B, Agwai A, Madenci E (2009) Peridynamics theory for progressive damage prediction in center-cracked composite laminates. Compos Struct 90: 141–151CrossRefGoogle Scholar
  16. Lehoucq RB, Silling SA (2008) Force flux and the peridynamic stress tensor. J Mech Phys Solids 56: 1566–1577CrossRefGoogle Scholar
  17. Macek RW, Silling SA (2007) Peridynamics via finite element analysis. Finite Elem Eng Des 43: 1169–1178CrossRefGoogle Scholar
  18. Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 9: 379–386CrossRefGoogle Scholar
  19. Rice JR, Rosengren GF (1968) Plane strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids 16: 1–12CrossRefGoogle Scholar
  20. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48: 175–209CrossRefGoogle Scholar
  21. Silling SA, Askari E (2005) A meshfree method based on peridynamic model of solid mechanics. Comput Struct 83: 1526–1535CrossRefGoogle Scholar
  22. Silling SA, Bobaru F (2005) Peridynamic modeling of membranes and fibers. Int J Nonlinear Mech 40: 395–409CrossRefGoogle Scholar
  23. Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44: 73–168CrossRefGoogle Scholar
  24. Xu J, Askari E, Weckner O, Silling SA (2008) Peridynamic analysis of impact damage in composite laminates. J Aerosp Eng 21: 187–194CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Wenke Hu
    • 1
  • Youn Doh Ha
    • 1
    • 3
  • Florin Bobaru
    • 1
  • Stewart A. Silling
    • 2
  1. 1.Department of Mechanical & Materials EngineeringUniversity of Nebraska-LincolnLincolnUSA
  2. 2.Sandia National Laboratories, Multiphysics Simulation Technology DepartmentAlbuquerqueUSA
  3. 3.Department of Naval ArchitectureKunsan National UniversityKunsanKorea

Personalised recommendations