Advertisement

International Journal of Fracture

, Volume 176, Issue 2, pp 189–194 | Cite as

Axisymmetric thermo-mechanical analysis of laser-driven non-contact transfer printing

  • Rui Li
  • Yuhang Li
  • Chaofeng Lü
  • Jizhou Song
  • Reza Saeidpourazar
  • Bo Fang
  • Yang Zhong
  • Placid M. Ferreira
  • John A. Rogers
  • Yonggang HuangEmail author
Originl Paper

Abstract

An axisymmetric thermo-mechanical model is developed for laser-driven non-contact transfer printing, which involves laser-induced impulsive heating to initiate separation at the interface between a soft, elastomeric stamp and hard micro/nanomaterials (i.e., inks) on its surface, due to a large mismatch in coefficients of thermal expansion. The result is the active ejection of the inks from the stamp, to a spatially separated receiving substrate, thereby representing the printing step. The model gives analytically the temperature field, and also a scaling law for the energy release rate for delamination at the interface between the stamp and an ink in the form of a rigid plate. The normalized critical laser pulse time for interfacial delamination depends only on the normalized absorbed laser power and width of the ink structure, and has been verified by experiments.

Keywords

Laser-driven non-contact transfer printing Thermo-mechanical analysis Axisymmetric model Stamp and ink 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Campbell SA (2001) The science and engineering of microelectronic fabrication. Oxford University Press, New YorkGoogle Scholar
  2. Crawford GP (2005) Flexible flat panel display technology. Wiley, New YorkCrossRefGoogle Scholar
  3. Dassault Systèmes (2009) ABAQUS Analysis User’s Manual V6.9. PawtucketGoogle Scholar
  4. Fettis HE, Caslin JC, Cramer KR (1973) Complex zeros of the error function and of the complementary error function. Math Comput 27: 401–407CrossRefGoogle Scholar
  5. Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428: 911–918CrossRefGoogle Scholar
  6. Gelinck GH, Huitema HEA, Van Veenendaal E et al (2004) Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater 3: 106–110CrossRefGoogle Scholar
  7. Incropera FP, DeWitt DP, Bergman TL et al (2007) Fundamentals of heat and mass transfer. Wiley, HobokenGoogle Scholar
  8. Kim DH, Ahn JH, Choi WM et al (2008) Stretchable and foldable silicon integrated circuits. Science 320: 507– 511CrossRefGoogle Scholar
  9. Kim DH, Lu NS, Ghaffari R et al (2011) Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat Mater 10: 316–323CrossRefGoogle Scholar
  10. Kim DH, Lu NS, Ma R et al (2011) Epidermal electronics. Science 333: 838–843CrossRefGoogle Scholar
  11. Kim DH, Viventi J, Amsden JJ et al (2010) Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 9: 511–517CrossRefGoogle Scholar
  12. Kim RH, Kim DH, Xiao JL et al (2010) Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat Mater 9: 929–937CrossRefGoogle Scholar
  13. Ko HC, Stoykovich MP, Song JZ et al (2008) A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454: 748–753CrossRefGoogle Scholar
  14. Li R, Li Y, Lü C et al (2012) Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis. Soft Matter 8: 3122–3127CrossRefGoogle Scholar
  15. Lu NS, Yoon J, Suo ZG (2007) Delamination of stiff islands patterned on stretchable substrates. Int J Mater Res 98: 717–722Google Scholar
  16. Lumelsky VJ, Shur MS, Wagner S (2001) Sensitive skin. Sens J IEEE 1: 41–51CrossRefGoogle Scholar
  17. Mannsfeld SCB, Tee BCK, Stoltenberg RM et al (2010) Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater 9: 859–864CrossRefGoogle Scholar
  18. Mark JE (1999) Polymer data handbook. Oxford University Press, New YorkGoogle Scholar
  19. Meitl MA, Zhu ZT, Kumar V et al (2006) Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater 5: 33–38CrossRefGoogle Scholar
  20. Nathan A, Park B, Sazonov A et al (2000) Amorphous silicon detector and thin film transistor technology for large-area imaging of X-rays. Microelectron J 31: 883–891CrossRefGoogle Scholar
  21. Okada Y, Tokumaru Y (1984) Precise determination of lattice-parameter and thermal-expansion coefficient of silicon between 300-K and 1500-K. J Appl Phys 56: 314–320CrossRefGoogle Scholar
  22. Saeidpourazar R, Li R, Li Y et al (2012) Laser-driven micro-transfer placement of prefabricated microstructures. J Microelectromech Syst. doi: 10.1109/JMEMS.2012.2203097
  23. Sekitani T, Nakajima H, Maeda H et al (2009) Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat Mater 8: 494–499CrossRefGoogle Scholar
  24. Sekitani T, Zschieschang U, Klauk H et al (2010) Flexible organic transistors and circuits with extreme bending stability. Nat Mater 9: 1015–1022CrossRefGoogle Scholar
  25. Someya T, Kato Y, Sekitani T et al (2005) Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci USA 102: 12321–12325CrossRefGoogle Scholar
  26. Someya T, Sekitani T (2009) Printed skin-like large-area flexible sensors and actuators. Proc Eurosens Xxiii Conf 1: 9–12Google Scholar
  27. Someya T, Sekitani T, Iba S et al (2004) A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc Natl Acad Sci USA 101: 9966–9970CrossRefGoogle Scholar
  28. Suo ZG (1989) Singularities interacting with interfaces and cracks. Int J Solids Struct 25: 1133–1142CrossRefGoogle Scholar
  29. Viventi J, Kim DH, Moss JD et al (2010) A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci Transl Med 2:24ra22Google Scholar
  30. Viventi J, Kim DH, Vigeland L et al (2011) Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci 14: 1599–1605CrossRefGoogle Scholar
  31. Yoon J, Baca AJ, Park SI et al (2008) Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat Mater 7: 907–915CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Rui Li
    • 1
    • 2
    • 3
  • Yuhang Li
    • 2
    • 3
    • 4
  • Chaofeng Lü
    • 2
    • 3
    • 5
  • Jizhou Song
    • 6
  • Reza Saeidpourazar
    • 7
    • 8
  • Bo Fang
    • 4
  • Yang Zhong
    • 1
  • Placid M. Ferreira
    • 8
  • John A. Rogers
    • 7
    • 8
  • Yonggang Huang
    • 2
    • 3
    Email author
  1. 1.Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial EquipmentDalian University of TechnologyDalianChina
  2. 2.Department of Civil and Environmental EngineeringNorthwestern UniversityEvanstonUSA
  3. 3.Department of Mechanical EngineeringNorthwestern UniversityEvanstonUSA
  4. 4.School of AstronauticsHarbin Institute of TechnologyHarbinChina
  5. 5.Department of Civil Engineering, Soft Matter Research CenterZhejiang UniversityHangzhouChina
  6. 6.Department of Mechanical and Aerospace EngineeringUniversity of MiamiCoral GablesUSA
  7. 7.Department of Materials Science and EngineeringUniversity of IllinoisUrbanaUSA
  8. 8.Department of Mechanical Science and EngineeringUniversity of IllinoisUrbanaUSA

Personalised recommendations