Advertisement

International Journal of Fracture

, Volume 176, Issue 2, pp 215–222 | Cite as

The Meaning, Selection, and Use of the Peridynamic Horizon and its Relation to Crack Branching in Brittle Materials

  • Florin Bobaru
  • Wenke Hu
Letters in Fracture and Micromechanics

Abstract

This note discusses the peridynamic horizon (the nonlocal region around a material point), its role, and practical use in modelling. The objective is to eliminate some misunderstandings and misconceptions regarding the peridynamic horizon. An example of crack branching in a nominally brittle material (homalite) is addressed and we show that crack branching takes place without wave interaction. We explain under what conditions the crack propagation speed depends on the horizon size and the role of incident stress waves on this speed.

Keywords

peridynamics nonlocal models continuum mechanics dynamic fracture crack branching brittle fracture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agwai A., Guven I., Madenci E. (2011) Predicting crack propagation with peridynamics: a comparative study. Int. J. Fract. 171: 65–78CrossRefGoogle Scholar
  2. Bobaru F. (2011) Peridynamics and multiscale modeling. Int. J. Multiscale Com. Eng. 9(6): vii–ixCrossRefGoogle Scholar
  3. Bobaru F., Yang M., Alves L.F., Silling S.A., Askari E., Xu J. (2009) Convergence, adaptive refinement, and scaling in 1d peridynamics. Int. J. Numer. Meth. Eng. 77(6): 852–877CrossRefGoogle Scholar
  4. Bobaru F., Duangpanya M. (2010) The peridynamic formulation for transient heat conduction. Int. J. Heat Mass Tran. 53(19-20): 4047–4059CrossRefGoogle Scholar
  5. Bobaru F., Ha Y.D. (2011) Adaptive refinement and multiscale modeling in 2d peridynamics. Int. J. Multiscale Com. Eng. 9(6): 635–659CrossRefGoogle Scholar
  6. Field J.E. (1971) Brittle fracture: its study and application. Contemp Phys 12(1): 1–31CrossRefGoogle Scholar
  7. Ha Y.D., Bobaru F. (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 162(1-2): 229–244CrossRefGoogle Scholar
  8. Ha Y.D., Bobaru F. (2011) Characteristics of dynamic brittle fracture captured with peridynamics. Eng. Fract. Mech. 78(6): 1156–1168CrossRefGoogle Scholar
  9. Ha Y.D., Bobaru F. (2011b). Dynamic brittle fracture captured with Peridynamics. Proc. of IMECE 2011, November 11- 17, 2011, Denver, Colorado, USA: IMECE2011-65515.Google Scholar
  10. Israelachvili, J.N. (1992). Intermolecular and Surface Forces. Academic Press, second edition.Google Scholar
  11. Livne A., Ben-David O., Fineberg J. (2007) Oscillations in rapid fracture. Phys. Rev. Lett. 98(12): 124301CrossRefGoogle Scholar
  12. Ramulu M., Kobayashi A.S., Kang B.S.J., Barker D.B. (1983) Further studies on dynamic crack branching. Exp. Mech. 23(4): 431–437CrossRefGoogle Scholar
  13. Ramulu M., Kobayashi A.S. (1985) Mechanics of crack curving and branching: a dynamic fracture analysis. Int. J. Fract. 27: 187–201CrossRefGoogle Scholar
  14. Ravi-Chandar K. (1998) Dynamic fracture of nominally brittle materials. Int. J. Fract. 90(1-2): 83–102CrossRefGoogle Scholar
  15. Ravi-Chandar K. (2004). Dynamic fracture. ElsevierGoogle Scholar
  16. Ravi-Chandar K., Knauss W.G. (1984) An experimental investigation into dynamic fracture - III. On steady state crack propagation and branching, Int. J. Fract. 26: 141–154Google Scholar
  17. Scheibert J., Guerra C., Célarié F., Dalmas D., Bonamy D. (2010) Brittle-quasibrittle transition in dynamic fracture: An energetic signature, Phys. Rev. Lett. 104(4): 045501CrossRefGoogle Scholar
  18. Seleson P., Parks M.L., Gunzburger M., Lehoucq R.B. (2009) Peridynamics as an upscaling of molecular dynamics. Multiscale Model. Sim. 8(1): 204–227CrossRefGoogle Scholar
  19. Silling S.A. (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech Phys Solids 48(1): 175–209CrossRefGoogle Scholar
  20. Silling S.A. (2011) A coarsening method for linear peridynamics. Int. J. Multiscale Com.Eng. 9(6): 609–621CrossRefGoogle Scholar
  21. Silling S.A., Bobaru F. (2005) Peridynamic modeling of membranes and fibers. Int. J. Nonlinear Mech. 40: 395–409CrossRefGoogle Scholar
  22. Silling S.A., Epton M., Weckner O., Xu J., Askari E. (2007) Peridynamic states and constitutive modeling. J. Elast. 88(2): 151–184CrossRefGoogle Scholar
  23. Silling S.A., Lehoucq R. (2008) Convergence of peridynamics to classical elast theory. J. Elast. 93: 13–37CrossRefGoogle Scholar
  24. Silling S.A., Lehoucq R.B. (2010) Peridynamic theory of solid mechanics. Adv. Appl. Mech. 44: 73–168CrossRefGoogle Scholar
  25. Streit R., Finnie L. (1980) An experimental investigation of crack-path directional stability. Exp. Mech. 20(1): 17–23CrossRefGoogle Scholar
  26. Weckner O., Silling S.A. (2011) Determination of nonlocal constitutive equations from phonon dispersion relations. Int. J. Multiscale Com. Eng. 9(6): 623–634CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Mechanical and Materials EngineeringUniveristy of Nebraska-LincolnLincoln, NebraskaUSA

Personalised recommendations