International Journal of Fracture

, Volume 175, Issue 1, pp 65–71

A Residual Stress Intensity Factor Solution for Knoop Indentation Cracks

  • Tanja Lube
  • Theo Fett
  • Stefan Fünfschilling
  • Michael J. Hoffmann
  • Rainer Oberacker
Letters in Fracture and Micromechanics

Abstract

The residual stress intensity factors at the surface and at the deepest point of the semi-elliptical Knoop indentation crack is determined from the stresses in the damaged zone below the indenter. For this purpose, the weight function approach by Cruse and Besuner was used and wide-range expressions of the geometric function are given. The solution is then applied to a commercial silicon nitride for which all relevant geometrical data are available.

Keywords

Knoop indentation crack silicon nitride stress intensity factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caspers M, Mattheck C, Munz D (1990) Propagation of surface cracks in notched and unnotched rods. ASTM STP 1060: 365–389Google Scholar
  2. Cook RF, Pharr GM (1990) Direct Observation and Analysis of Indentation Cracking in Glasses and Ceramics. Journal of the American Ceramic Society 73: 787–817CrossRefGoogle Scholar
  3. Cruse TA, Besuner PM (1975) Residual life prediction for surface cracks in complex structural details. Journal of Aircraft 12: 369–375CrossRefGoogle Scholar
  4. Fett T, Munz D (1997) Stress intensity factors and weight functions. Computational Mechanics Publications, Southampton, UKGoogle Scholar
  5. Fett T, Fünfschilling S, Hoffmann MJ, Oberacker R (2008) Different R-curves for 2- and 3-dimensional cracks. International Journal of Fracture 153: 153–159CrossRefGoogle Scholar
  6. Fett T (2009) Stress intensity factors, T-stresses, Weight function (Supplement Volume), IKM55. KIT Scientific, Publishing, Karlsruhe; (open Access, http://digbib.ubka.uni-karlsruhe.de/volltexte/1000013835).
  7. Fünfschilling S, Fett T, Oberacker R, Hoffmann MJ, Özcoban H, Jelitto H, Schneider GA, Kruzic JJ (2010) R-curves from compliance and optical crack-length measurements. Journal of the American Ceramic Society 93, 2814-21Google Scholar
  8. Görner F, Mattheck C, Munz D (1983) Change in geometry of surface cracks during alternating tension and bending. Zeitschrift für Werkstofftechnik 14: 11–18CrossRefGoogle Scholar
  9. Keer LM, Farris TN, Lee JC (1986) Knoop and Vickers indentation in ceramics analyzed as a three-dimensional fracture. Journal of the American Ceramic Society 69, 392-96.Google Scholar
  10. Lawn BR, Evans AG, Marshall DB (1980) Elastic/plastic indentation damage in ceramics: The medial/radial crack system. Journal of the American Ceramic Society 63, 574-81.Google Scholar
  11. Li C-W, Lee D-J, Lui S-C (1992) R-Curve Behaviour and Strength for In-Situ Reinforced Silicon Nitrides with Different Microstructures. Journal of the American Ceramic Society 75, 1777-85.Google Scholar
  12. Lube T (2001) Indentation crack profiles in silicon nitride. Journal of the European Ceramic Society 21: 211–218CrossRefGoogle Scholar
  13. Lube T, Fett T (2004) A threshold stress intensity factor at the onset of stable crack extension of Knoop indentation cracks. Engineering Fracture Mechanics 71: 2263–2269CrossRefGoogle Scholar
  14. Mahmoud MA (1990) Surface fatigue crack growth under combined tension and bending loading. Engineering Fracture Mechanics 36: 389–395CrossRefGoogle Scholar
  15. Marshall DB (1983) Controlled flaws in ceramics: A comparison of Knoop and Vickers indentation. Journal of the American Ceramic Society 66: 127–131CrossRefGoogle Scholar
  16. Varfolomeyev IV, Vainshtok VA, Krasowsky AY (1991) Prediction of part-through crack growth under cyclic loading. Engineering Fracture Mechanics 40: 1007–1022CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Tanja Lube
    • 1
  • Theo Fett
    • 2
  • Stefan Fünfschilling
    • 2
    • 3
  • Michael J. Hoffmann
    • 2
  • Rainer Oberacker
    • 2
  1. 1.Institut für Struktur- und FunktionskeramikMontanuniversitaet LeobenLeobenAustria
  2. 2.Institut für Angewandte Materialien - Keramik im MaschinenbauUniversität KarlsruheKarlsruheGermany
  3. 3.FrauenfeldSwitzerland

Personalised recommendations