International Journal of Fracture

, Volume 168, Issue 2, pp 133–143 | Cite as

A time-discrete model for dynamic fracture based on crack regularization

  • Blaise Bourdin
  • Christopher J. Larsen
  • Casey L. Richardson
Original Paper

Abstract

We propose a discrete time model for dynamic fracture based on crack regularization. The advantages of our approach are threefold: first, our regularization of the crack set has been rigorously shown to converge to the correct sharp-interface energy Ambrosio and Tortorelli (Comm. Pure Appl. Math., 43(8): 999–1036 (1990); Boll. Un. Mat. Ital. B (7), 6(1):105–123, 1992); second, our condition for crack growth, based on Griffith’s criterion, matches that of quasi-static settings Bourdin (Interfaces Free Bound 9(3): 411–430, 2007) where Griffith originally stated his criterion; third, solutions to our model converge, as the time-step tends to zero, to solutions of the correct continuous time model Larsen (Math Models Methods Appl Sci 20:1021–1048, 2010). Furthermore, in implementing this model, we naturally recover several features, such as the elastic wave speed as an upper bound on crack speed, and crack branching for sufficiently rapid boundary displacements. We conclude by comparing our approach to so-called “phase-field” ones. In particular, we explain why phase-field approaches are good for approximating free boundaries, but not the free discontinuity sets that model fracture.

Keywords

Dynamic fracture Phase field Griffith’s criterion Crack regularization Variational fracture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambrosio L, Braides A (1995) Energies in SBV and variational models in fracture mechanics. In: Homogenization and applications to material sciences (Nice, 1995), volume 9 of GAKUTO Internat. Ser Math Sci Appl Gakkōtosho, Tokyo, pp 1–22Google Scholar
  2. Ambrosio L, Tortorelli VM (1990) Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm Pure Appl Math 43(8): 999–1036CrossRefGoogle Scholar
  3. Ambrosio L, Tortorelli VM (1992) On the approximation of free discontinuity problems. Boll Un Mat Ital B (7) 6(1): 105–123Google Scholar
  4. Amor H, Marigo J-J, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57(8): 1209–1229CrossRefGoogle Scholar
  5. Aranson IS, Kalatsky VA, Vinokur VM (2000) Continuum field description of crack propagation. Phys Rev Lett 85(1): 118–121CrossRefGoogle Scholar
  6. Balay S, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Smith BF, Zhang H (2008) PETSc users manual. ANL-95/11-Revision 3.0.0, Argonne National LaboratoryGoogle Scholar
  7. Balay S, Buschelman K, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Smith BF, Zhang H (2009) PETSc Web page, http://www.mcs.anl.gov/petsc
  8. Bellettini G, Coscia A (1994) Discrete approximation of a free discontinuity problem. Numer Funct Anal Optim 15(3-4): 201–224CrossRefGoogle Scholar
  9. Bourdin B (2007) Numerical implementation of the variational formulation for quasi-static brittle fracture. Interfaces Free Bound 9(3): 411–430CrossRefGoogle Scholar
  10. Bourdin B, Francfort GA, Marigo J-J (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4): 797–826CrossRefGoogle Scholar
  11. Bourdin B, Francfort GA, Marigo J-J (2008) The variational approach to fracture. SpringerGoogle Scholar
  12. Braides A (1998) Approximation of free-discontinuity problems. Number 1694 in Lecture Notes in Mathematics. SpringerGoogle Scholar
  13. Braides A (2002) Γ-convergence for beginners, volume 22 of Oxford Lecture series in mathematics and its applications. Oxford University Press, OxfordGoogle Scholar
  14. Bronsard L, Kohn RV (1990) On the slowness of phase boundary motion in one space dimension. Comm. Pure Appl Math 43(8): 983–997CrossRefGoogle Scholar
  15. Corson F, Adda-Bedia M, Henry H, Katzav E (2009) Thermal fracture as a framework for crack propagation law. Int J Fract 158: 1–14CrossRefGoogle Scholar
  16. Dal Maso G (1993) An introduction to Γ-convergence. Birkhäuser, BostonGoogle Scholar
  17. Del Piero G, Lancioni G, March R (2007) A variational model for fracture mechanics: numerical experiments. J Mech Phys Solids 55: 2513–2537CrossRefGoogle Scholar
  18. Eastgate LO, Sethna JP, Rauscher M, Cretegny T, Chen C-S, Myers CR (2002) Fracture in mode I using a conserved phase-field model. Phys Rev 65(3): 036117Google Scholar
  19. Francfort GA, Larsen CJ (2003) Existence and convergence for quasi-static evolution in brittle fracture. Comm Pure Appl Math 56(10): 1465–1500CrossRefGoogle Scholar
  20. Francfort GA, Marigo J-J (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8): 1319–1342CrossRefGoogle Scholar
  21. Freddi F, Royer Carfagni G (2010) Regularized variational theories of fracture: a unified approach. J Mech Phys Solids 58(8): 1154–1174CrossRefGoogle Scholar
  22. Giacomini A (2005) Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures. Calc Var Partial Differ Equ 22(2): 129–172Google Scholar
  23. Grandinetti, L (eds) (2007) TeraGrid: analysis of organization, system architecture, and middleware enabling new types of applications, advances in parallel computing. IOS Press, AmsterdamGoogle Scholar
  24. Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond 221: 163–198CrossRefGoogle Scholar
  25. Hakim V, Karma A (2009) Laws of crack motion and phase-field models of fracture. J Mech Phys Solids 57(2): 342– 368CrossRefGoogle Scholar
  26. Karma A, Kessler DA, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 87(4): 045501CrossRefGoogle Scholar
  27. Karma A, Lobkovsky AE (2004) Unsteady crack motion and branching in a phase-field model of brittle fracture. Phys Rev Lett 92(24): 245510CrossRefGoogle Scholar
  28. Keyes DE, Reynolds DR, Woodward CS (2006) Implicit solvers for large-scale nonlinear problems. J Phys Conf Ser 46: 433–442CrossRefGoogle Scholar
  29. Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture: a practical application to the french Panthéon. J Elast 95(1–2): 1–30CrossRefGoogle Scholar
  30. Larsen CJ, Ortner C, Süli E (2010) Existence of solutions to a regularized model of dynamic fracture. Math Models Methods Appl Sci 20: 1021–1048CrossRefGoogle Scholar
  31. Larsen CJ (2010) Models for dynamic fracture based on Griffith’s criterion. In: Hackl K (eds) IUTAM symposium on variational concepts with applications to the mechanics of materials. Springer, Berlin, pp 131–140CrossRefGoogle Scholar
  32. Lawn B (1993) Fracture of brittle solids. 2. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  33. Marconi VI, Jagla EA (2005) Diffuse interface approach to brittle fracture. Phys Rev 71(3): 036110Google Scholar
  34. Modica L, Mortola S (1977) Il limite nella Γ–convergenza di una famiglia di funzionali ellittici. Boll Un Mat Ital A (5) 14(3): 526–529Google Scholar
  35. Modica L, Mortola S (1977) Un esempio di Γ–convergenza. Boll Un Mat Ital B (5) 14(1): 285–299Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Blaise Bourdin
    • 1
  • Christopher J. Larsen
    • 2
  • Casey L. Richardson
    • 3
    • 4
  1. 1.Department of Mathematics and Center for Computation & TechnologyLouisiana State UniversityBaton RougeUSA
  2. 2.Department of Mathematical SciencesWorcester Polytechnic InstituteWorcesterUSA
  3. 3.Department of MathematicsWorcester Polytechnic InstituteWorcesterUSA
  4. 4.Center for Imaging Science, Clark 319BJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations