Advertisement

International Journal of Fracture

, Volume 163, Issue 1–2, pp 121–131 | Cite as

On the dynamic fragmentation of glass: a meso-damage model

  • Xavier Brajer
  • François HildEmail author
  • Stéphane Roux
Original Paper

Abstract

This paper presents an anisotropic damage model to deal with the fragmentation induced by impact loadings on glass samples. As small-scale (i.e. sub-element) damage is described as well as cracks extending above the element scale, an approach referred to as “meso-damage” is developed. The latter, which is based on the knowledge of random distributions of initiation sites, predicts different regimes such as single or multiple fragmentation. The experimental opening crack pattern obtained in edge-on-impact test is reproduced numerically.

Keywords

FE simulations Fragmentation regime Non-local damage Poisson-Weibull model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brajer X, Hild F, Roux S, Gy R (2002) Behavior of soda-lime glasses impacted by a soft bullet: experimental and numerical investigations. Proceedings 14th Dymat Technical Meeting, (EURODYMAT), pp 35–44Google Scholar
  2. Brajer X, Forquin P, Gy R, Hild F (2003) The role of surface and volume defects in the fracture of glass under quasi-static and dynamic loadings. J Non Cryst Solids 316: 42–53CrossRefADSGoogle Scholar
  3. Brara A, Klepaczko J (2001) An experimental method for dynamic tensile testing of concrete by spalling. Int J Impact Eng 25: 387–409CrossRefGoogle Scholar
  4. Budiansky B, O’Connell RJ (1976) Elastic moduli of a cracked system. Int J Solids Struct 12: 81–97zbMATHCrossRefGoogle Scholar
  5. Cagnoux J (1985) Déformation et ruine d’un verre pyrex soumis à un choc intense: étude expérimentale et modélisation du comportement. Thèse d’Etat, University of PoitiersGoogle Scholar
  6. Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33(20–22): 2899–2938zbMATHCrossRefGoogle Scholar
  7. Davies DGS (1973) The statistical approach to engineering design in ceramics. Proc Br Ceram Soc 22: 429–452Google Scholar
  8. den Reijer PC (1991) Impact on Ceramic Faced Armor. PhD Dissertation, Delft Technical UniversityGoogle Scholar
  9. Denoual C, Cottenot CE, Hild F (1996) On the identification of damage during impact of a ceramic by a hard projectile. In: Proceedings 16th international conference on BALLISTICS. APDS, Arlington, pp 541–550Google Scholar
  10. Denoual C, Cottenot CE, Hild F (1998) Analysis of the Degradation Mechanisms in an Impacted Ceramic. In: Schmidt SC, Dandekar DP, Forbes JW (eds) Proceedings Shock Compression of Condensed Matter. AIP Press, New York, pp 427–430Google Scholar
  11. Denoual C, Hild F (2000) A damage model for the dynamic fragmentation of brittle solids. Comp Methods Appl Mech Eng 183: 247–258zbMATHCrossRefGoogle Scholar
  12. Denoual C, Hild F (2002) Dynamic fragmentation of brittle solids: a multi-scale model. Eur J Mech A/Solids 21(1): 105–120zbMATHCrossRefGoogle Scholar
  13. EN1063 standard, glass in building—Security glazing—Testing and classification of resistance against bullet attack, CEN European Committee for Standardization (1999)Google Scholar
  14. Espinosa HD, Zavattieri PD, Dwivedi SK (1998) A finite deformation continuum/discrete model for the description of fragmentation and damage in brittle materials. J Mech Phys Solids 46: 1909–1942zbMATHCrossRefMathSciNetADSGoogle Scholar
  15. Forquin P, Tran L, Louvigné P-F, Rota L, Hild F (2003) Effect of aluminum reinforcement on the dynamic fragmentation of SiC ceramics. Int J Impact Eng 28: 1061–1076CrossRefGoogle Scholar
  16. Forquin P, Hild F (2008) Dynamic fragmentation of an ultra-high strength concrete during edge-on impact tests. ASCE J Eng Mech 134(4): 302–315CrossRefGoogle Scholar
  17. Freudenthal AM (1968) Statistical approach to brittle fracture. In: Liebowitz H (eds) Fracture. Academic Press, New York, pp 591–619Google Scholar
  18. Grady DE, Kipp ME (1980) Continuum modeling of explosive fracture in oil shale. Int J Rock Min Sci & Geomech Abstr 17: 147–157CrossRefGoogle Scholar
  19. Graff KF (1975) Wave motion in elastic solids. Clarendon Press, OxfordzbMATHGoogle Scholar
  20. Grange S, Forquin P, Mencacci S, Hild F (2008) On the dynamic fragmentation of two limestones using edge-on impact tests. Int J Impact Eng 35(9): 977–991CrossRefGoogle Scholar
  21. Gulino R, Phoenix SL (1991) Weibull strength statistics for graphite fibres measured from the break progression in a model graphite/glass/epoxy microcomposite. J Mater Sci 26(11): 3107–3118CrossRefADSGoogle Scholar
  22. Gy R, Guillemet C (1992) Characterization of a mode of rupture of glass at 610°C. In: Pye LD, Course WCL, Stevens HJ (eds) The physics of non-crystalline solids. Taylor and Francis, LondonGoogle Scholar
  23. Hiermaier S, Riedel W (1997) Numerical simulation of failure in brittle materials using smooth particle hydrodynamics. Proceedings New models and numerical codes for schock wave processes in condensed mediaGoogle Scholar
  24. Hild F, Brajer X, Denoual C, Forquin P (2003) On the probabilistic-deterministic transition involved in a fragmentation process of brittle materials. Comput Struct 81(12): 1241–1253CrossRefGoogle Scholar
  25. Hornemann U, Kalthoff JF, Rothenhäusler H, Senf H, Winkler S (1984) Experimental investigation of wave and fracture propagation in glass—slabs loaded by steel cylinders at high impact velocities. EMI report E 4/84, Weil am Rhein (Germany)Google Scholar
  26. Jeulin D (1991) Modèles morphologiques de structures aléatoires et changement d’échelle. Thèse d’Etat, University of CaenGoogle Scholar
  27. Johnson GR, Holmquist TJ (1992) An improved computational constitutive model for brittle materials. High Pres Sci Technol 2: 981–984Google Scholar
  28. Lemaitre J (1992) A course on damage mechanics. Springer, BerlinzbMATHGoogle Scholar
  29. Libersky LD, Petscheck AG (1993) High strain lagrangian hydrodynamics. J Comp Phys 109: 67–75zbMATHCrossRefADSGoogle Scholar
  30. Margolin LG (1983) Elasticity moduli of a cracked body. Int J Fract 22: 65–79CrossRefGoogle Scholar
  31. Mastilovic S, Krajcinovic D (1999) High-velocity expansion of a cavity within a brittle material. J Mech Phys Solids 47: 577–600zbMATHCrossRefADSGoogle Scholar
  32. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30: 543–574CrossRefADSGoogle Scholar
  33. Oakley DR (1996) An empirical study of the effect of stressed area on the strength of float glass surfaces. J Non-Cryst Solids 196: 134–138CrossRefADSGoogle Scholar
  34. Pugh EM, Heine-Geldern RV, Foner S, Mutschler EC (1952) Glass cracking caused by high explosives. J Appl Phys 23: 48–53CrossRefADSGoogle Scholar
  35. Rabotnov YN (1969) Creep problems in structural members. North-Holland, AmsterdamzbMATHGoogle Scholar
  36. Rajendran AM (1994) Modeling the impact behavior of AD85 ceramic under multiaxial loading. Int J Impact Eng 15(6): 749–768CrossRefGoogle Scholar
  37. Ravi-Chandar K (1998) Dynamic fracture of nominally brittle materials. Int J Fract 90: 83–102CrossRefGoogle Scholar
  38. Ravi-Chandar K, Yang B (1997) On the role of microcracks in the dynamic fracture of brittle materials. J Mech Phys Solids 45(4): 535–563CrossRefADSGoogle Scholar
  39. Strassburger E, Patel P, McCauley JW, Kovalchick C, Ramesh KT, Templeton DW (2007) High-speed transmission shadowgraphic and dynamic photoelasticity study of stress wave and impact damage propagation in transparent materials and laminates using the edge-on impact method. Proceedings 23rd international symposium on ballisticsGoogle Scholar
  40. Taylor LM, Chen E-P, Kuszmaul JS (1986) Microcrack-induced damage accumulation in brittle rocks under dynamic loading. Comp Methods Appl Mech Eng 55: 301–320zbMATHCrossRefGoogle Scholar
  41. Weibull W (1939) A statistical theory of the strength of materials. Roy Swed Inst Eng Res, Report 151Google Scholar
  42. Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42: 1397–1434zbMATHCrossRefADSGoogle Scholar
  43. Zhou F, Molinari J-F (2004) Stochastic fracture of ceramics under dynamic tensile loading. Int J Solids Struct 41: 6573–6596zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Saint-Gobain RechercheAubervilliers CedexFrance
  2. 2.LMT-Cachan, ENS Cachan/CNRS/UPMC/PRES UniverSud ParisCachan CedexFrance

Personalised recommendations