Advertisement

International Journal of Fracture

, Volume 160, Issue 1, pp 43–54 | Cite as

Interfacial fracture of piezoelectric multilayer actuators under mechanical and electrical loading

  • C. Häusler
  • H. Jelitto
  • P. Neumeister
  • H. Balke
  • G. A. Schneider
Original Paper

Abstract

The fracture behaviour of metal-piezoceramic interfaces under mechanical and electrical loading is examined by four point bending using commercial multilayer actuators. The experiments are performed under stable crack growth in a custom made very stiff testing machine. Besides mechanical loading, a constant electric field was methodically switched on in longitudinal specimen direction. Both poled and unpoled actuators were tested. The crack morphology and the fracture toughness depend on the type of the metal-ceramic interfaces. Assuming different electrical crack boundary conditions of a permeable and an impermeable crack, the field intensity factors K ic , with i = 1, 2, 3, and energy release rates G c (K ic ) at the measured critical loads are evaluated with linear-piezoelectric finite element calculations. Inside the bounds of the electrically induced mixed-mode angles, the permeable crack boundary condition yields a constant interface toughness Γ.

Keywords

Four point bending test Mixed-mode fracture Interface toughness PZT Actuators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson TL (1995) Fracture mechanics, fundamentals and applications, 2nd. CRC Press, Boca RatonzbMATHGoogle Scholar
  2. Balke H, Kemmer G, Drescher J (1997) Some remarks on fracture mechanics of piezoelectric solids. In: Michel B, Winkler T (eds) Proceedings of the International Conference and Exhibition of Micro Materials, Berlin, pp 398–401Google Scholar
  3. Dawber M, Scott J (2001) Fatigue and oxygen vacancy ordering in thin film and bulk single crystal ferroelectrics. Integr Ferroelectr 32: 259–266CrossRefGoogle Scholar
  4. Fu R, Zhang TY (2000) Effects of an electric field on the fracture toughness of poled lead zirconate titanate ceramics. J Am Ceram Soc 83: 1215–1218CrossRefGoogle Scholar
  5. Guiu F, Algueró M, Reece MJ (2003) Crack extension force and rate of mechanical work of fracture in linear dielectrics and piezoelectrics. Philos Mag 83: 873–888CrossRefADSGoogle Scholar
  6. Häusler C, Balke H (2001) Der Grenzflächenriss zwischen einer Piezokeramik und einem Leiter. In: Haupt P, Kersten T, Ulbricht V (eds) Beiträge zur Modellierung und Identifikation. Berichte des Instituts für Mechanik, kassel university press GmbH, Universität Gesamthochschule Kassel, Kassel pp 57–66Google Scholar
  7. Häusler C, Balke H (2005) Full form of the near tip field for the interface crack between a piezoelectric material and a thin electrode. Mater Sci Forum 492–493: 261–266CrossRefGoogle Scholar
  8. Häusler C, Gao CF, Balke H (2004) Collinear and periodic electrode-ceramic interfacial cracks in piezoelectric bimaterials. J Appl Mech 71(4): 486–492zbMATHCrossRefGoogle Scholar
  9. Hutchinson JW, Suo Z (1992) Mixed mode cracking in layered materials. In: Hutchinson JW, Wu TY (eds) Advances in applied mechanics, vol 29. Academic Press, San Diego, CA, pp 63–191Google Scholar
  10. Jelitto H, Keßler H, Schneider GA, Balke H (2005) Fracture behavior of poled piezoelectric PZT under mechanical and electrical loads. J Eur Ceram Soc 25: 749–757CrossRefGoogle Scholar
  11. Kuna M (2006) Finite element analyses of cracks in piezoelectric structures—a survey. Arch Appl Mech 76: 725–745zbMATHCrossRefGoogle Scholar
  12. Lynch CS (1998) Fracture of ferroelectric and relaxor electro-ceramics: influence of electric field. Acta mater 46: 599–608CrossRefGoogle Scholar
  13. McMeeking RM (1989) Electrostrictive stresses near crack-like flaws. J Appl Maths Phys (ZAMP) 40: 615–627zbMATHCrossRefGoogle Scholar
  14. McMeeking RM (2001) Towards a fracture mechanics for brittle piezoelectric and dielectric materials. Int J Fract 108: 25–41CrossRefGoogle Scholar
  15. Pritchard J, Bowen CR, Lowrie F (2001) Multilayer act uators: review. Br Ceram Trans 100(6): 265–273CrossRefGoogle Scholar
  16. Rice JR (1988) Elastic fracture mechanics concepts for interfacial cracks. J Appl Mech 55: 98–103CrossRefGoogle Scholar
  17. Schneider GA (2002) Fracture mechanical and mechanical properties of piezo-electric ceramics and piezoceramic/electrode interfaces under high electric fields. In: Setter N (eds) Piezoelectric materials and devices, Nava Setter. Ceramic laboratory, EPFL Swiss Federal Laboratory of Technology, Lausanne 1015, Switzerland, pp 195–210Google Scholar
  18. Schneider GA (2007) Influence of electric field and mechanical stresses on the fracture of ferroelectrics. Annu Rev Mater Res 37: 491–538CrossRefADSGoogle Scholar
  19. Schneider GA, Felten F, McMeeking RM (2003) The electrical potential difference across cracks in PZT measured by Kelvin Probe Microscopy and the implications for fracture. Acta mater 51: 2235–2241CrossRefGoogle Scholar
  20. Weitzing H (2000) Schadensphänomene und bruchmechanische Charakterisierung piezokeramischer Multilayeraktoren. Dissertation, Shaker Verlag, Technische Universität Hamburg-HarburgGoogle Scholar
  21. Zhang TY, Zhao M, Tong P (2001) Fracture of piezoelectric ceramics. In: van der Giessen E, Wu TY (eds) Advances in applied mechanics, vol 38. Academic Press, San Diego, CA, pp 147–289Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • C. Häusler
    • 1
  • H. Jelitto
    • 2
  • P. Neumeister
    • 1
  • H. Balke
    • 1
  • G. A. Schneider
    • 2
  1. 1.Institute of Solid MechanicsTU DresdenDresdenGermany
  2. 2.Institute of Advanced CeramicsHamburg University of TechnologyHamburgGermany

Personalised recommendations