International Journal of Fracture

, Volume 162, Issue 1–2, pp 33–49 | Cite as

Time dependent crack tip enrichment for dynamic crack propagation

  • Thomas MenouillardEmail author
  • Jeong-Hoon Song
  • Qinglin Duan
  • Ted Belytschko
Original Paper


We study several enrichment strategies for dynamic crack propagation in the context of the extended finite element method and the effect of different directional criteria on the crack path. A new enrichment method with a time dependent enrichment function is proposed. In contrast to previous approaches, it entails only one crack tip enrichment function. Results for stress intensity factors and crack paths for different enrichments and direction criteria are given.


Dynamic Fracture XFEM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atluri SN, Nishioka T (1985) Numerical studies in dynamic fracture mechanics. Int J Frac 27(3): 245–261CrossRefGoogle Scholar
  2. Barenblatt GI (1962) The mathematical theory of equilibrium cracks formed in brittle fracture. Adv Appl Mech 7: 55–129CrossRefMathSciNetGoogle Scholar
  3. Belytschko T, Chen H (2004) Singular enrichment finite element method for elastodynamic crack propagation. Int J Comput Method 1(1): 1–15zbMATHCrossRefGoogle Scholar
  4. Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Method Engin 58: 1873–1905zbMATHCrossRefGoogle Scholar
  5. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Method Appl Mech Engin 139(1–4): 3–47zbMATHCrossRefGoogle Scholar
  6. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, ChichesterzbMATHGoogle Scholar
  7. Belytschko T, Moës N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Method Engin 50(4): 993–1013zbMATHCrossRefGoogle Scholar
  8. Black T, Belytschko T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Method Engin 45: 601–620zbMATHCrossRefGoogle Scholar
  9. Böhme W, Kalthoff JF (1982) The behavior of notched bend specimens in impact testing. Int J Frac 20(4): 139–143CrossRefGoogle Scholar
  10. Bui HD (1978) Mecanique de la rupture fragile. Masson, ParisGoogle Scholar
  11. Elguedj T, Gravouil A, Combescure A (2006) Appropriate extended functions for X-FEM simulation of plastic fracture mechanics. Comput Method Appl Mech Engin 195(7-8): 501–515zbMATHCrossRefGoogle Scholar
  12. Elguedj T, Gravouil A, Maigre H (2009) An explicit dynamics extended finite element method. part 1: mass lumping for arbitrary enrichment functions. Comput Method Appl Mech Engin 198(30–32): 2297–2317CrossRefGoogle Scholar
  13. Flanagan DP, Belytschko T (1981) A uniform strain hexahedron and quadrilateral with orthogonal hourglass control (in one-point integration of isoparametric finite element analysis). Int J Numer Method Engin 17: 679–706zbMATHCrossRefGoogle Scholar
  14. Fleming M, Chu YA, Moran B, Belytschko T (1997) Enriched element-free Galerkin methods for crack tip fields. Int J Numer Method Engin 40(8): 1483–1504CrossRefMathSciNetGoogle Scholar
  15. Freund LB (1972) Crack propagation in an elastic solid subjected to general loading. Pt. 1. Constant rate of extension. J Mech Phys Solid 20(3): 129–140CrossRefADSGoogle Scholar
  16. Freund LB (1990) Dynamic fracture mechanics. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  17. Freund LB, Douglas AS (1982) Influence of inertia on elastic-plastic antiplane-shear crack growth. J Mech Phys Solid 30(1): 59–74zbMATHCrossRefADSGoogle Scholar
  18. Gol’dstein RV, Salganik RL (1974) Brittle fracture of solids with arbitrary cracks. Int J Frac 10(4): 507–523CrossRefGoogle Scholar
  19. Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Met Appl Mech Eng 193(33–35): 3523–3540zbMATHCrossRefMathSciNetGoogle Scholar
  20. Hillerborg A, Modeer M, Petersson PE et al (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement Concrete Res 6(6): 773–782CrossRefGoogle Scholar
  21. Kalthoff JF (1985) On the measurement of dynamic fracture toughnesses—a review of recent work. Int J Frac 27(3): 277–298CrossRefGoogle Scholar
  22. Koh BC, Kikuchi N (1987) New improved hourglass control for bilinear and trilinear elements in anisotropic linear elasticity. Comput Method Appl Mech Engin 65(1): 1–46zbMATHCrossRefMathSciNetGoogle Scholar
  23. Lee YJ, Freund LB (1990) Fracture initiation due to asymmetric impact loading of an edge cracked plate. J Appl Mech 57: 104CrossRefGoogle Scholar
  24. Linder C, Armero F (2009) Finite elements with embedded branching. Finite Elem Anal Des 45: 280–293CrossRefMathSciNetGoogle Scholar
  25. Liu WK, Hu Y, Belytschko T (1994) Multiple quadrature underintegrated finite elements. Int J Numer Met Engin 37(19): 3263–3289zbMATHCrossRefMathSciNetGoogle Scholar
  26. Melenk JM, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Method Appl Mech Engin 139(1–4): 289–314zbMATHCrossRefGoogle Scholar
  27. Menouillard T, Réthoré J, Combescure A, Bung H (2006) Efficient explicit time stepping for the extended finite element method (X-FEM). Int J Numer Method Engin 68: 911–939zbMATHCrossRefGoogle Scholar
  28. Menouillard T, Réthoré J, Moës N, Combescure A, Bung H (2008) Mass lumping strategies for X-FEM explicit dynamics: application to crack propagation. Int J Numer Method Engin 74(3): 447–474zbMATHCrossRefGoogle Scholar
  29. Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Engin Frac Mech 69: 813–833CrossRefGoogle Scholar
  30. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Method Engin 46(1): 131–150zbMATHCrossRefGoogle Scholar
  31. Nishioka T, Murakami R, Takemoto Y (1990) The use of the dynamic J integral (J’) in finite element simulation of mode I and mixed-mode dynamic crack propagation. Int J Pres Ves Pip 44: 329–352CrossRefGoogle Scholar
  32. Rabczuk T, Song JH, Belytschko T (2009) Simulations of instability in dynamic fracture by the cracking particles method. Engin Frac Mech 76: 730–741CrossRefGoogle Scholar
  33. Ravi-Chandar K (2004) Dynamic fracture. Elsevier, AmsterdamGoogle Scholar
  34. Réthoré J, Gravouil A, Combescure A (2005) An energy-conserving scheme for dynamic crack growth using the extended finite element method. Int J Numer Met Engin 63: 631–659zbMATHCrossRefGoogle Scholar
  35. Rosakis AJ, Freund LB (1982) Optical measurement of the plastic strain concentration at a crack tip in a ductile steel plate. J Engin Mater Technol(Transactions of the ASME) 104(2): 115–120CrossRefGoogle Scholar
  36. Rozycki P, Moës N, Béchet E, Dubois C (2008) X-FEM explicit dynamics for constant strain elements to alleviate mesh constraints on internal or external boundaries. Comput Method Appl Mech Engin 197(5): 349–363zbMATHCrossRefGoogle Scholar
  37. Song JH, Areias PMA, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Method Engin 67: 868–893zbMATHCrossRefGoogle Scholar
  38. Stolarska M, Chopp DL, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Method Engin 51: 943–960zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Thomas Menouillard
    • 1
    Email author
  • Jeong-Hoon Song
    • 1
  • Qinglin Duan
    • 1
  • Ted Belytschko
    • 1
  1. 1.Department of Mechanical EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations