International Journal of Fracture

, Volume 156, Issue 2, pp 111–128 | Cite as

Rate effects in mode-II fracture of plastically deforming, adhesively bonded structures

Original Paper

Abstract

Results from a combined experimental and numerical investigation into the effects of rate on mode-II fracture of a plastically deforming, adhesively bonded joint are presented. It is shown that a cohesive-zone model has to be modified to include coupling between normal and shear modes of deformation when there is extensive shear deformation of the adhesive layer. A suitable cohesive-zone modeling strategy is described, and the mode-II cohesive parameters determined from the model are presented as a function of loading rate. Previous studies of the same system showed that the effects of rate in mode-I were limited to the probability that a crack growing in a toughened quasi-static mode would spontaneously make a transition to a brittle mode of fracture. No such transitions were found for mode-II fracture. Crack growth always occurred in a quasi-static fashion. While there was some evidence that rate might affect the mode-II fracture parameters, these effects were very limited even up to crack velocities of about 1,000 mm/s. Any possible effects was limited to a very minor increase in toughness and strength with increased loading rates. However, the magnitude of these possible increases were comparable to the magnitude of the uncertainties in the measured values.

Keywords

Cohesive zone Bonded joint Finite elements Experiments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akisanya AR, Fleck NA (1992) Brittle-fracture of adhesive joints. Int J Fract 58: 93–114. doi:10.1007/BF00019971 CrossRefADSGoogle Scholar
  2. Barrett JD, Foschi RO (1977) Mode II stress-intensity factors for cracked wood beams. Eng Fract Mech 9: 371–378. doi:10.1016/0013-7944(77)90029-7 CrossRefGoogle Scholar
  3. Blackman BRK, Kinloch AJ, Paraschi M (2006) The determination of the mode II adhesive fracture resistance, GIIC, of structure adhesive joints: an effective crack length. Eng Fract Mech 72: 877–897. doi:10.1016/j.engfracmech.2004.08.007 CrossRefGoogle Scholar
  4. Bulchholz FG, Rikards R, Wang H (1997) Computational analysis of interlaminar fracture of laminated composites. Int J Fract 86: 37–57. doi:10.1023/A:1007385126008 CrossRefGoogle Scholar
  5. Caimmi F, Frassine R, Pavan A (2006) A new jig for mode II interlaminar fracture testing of composite materials under quasi-static and moderately high rate of loading. Eng Fract Mech 73: 2277–2291. doi:10.1016/j.engfracmech.2006.05.002 CrossRefGoogle Scholar
  6. Carlsson LA, Gillespie JW, Pipes RB (1986) On the analysis and design of the end notched flexure specimen for mode II testing. J Compos Mater 20: 594–603. doi:10.1177/002199838602000606 CrossRefGoogle Scholar
  7. Chai H (1988) Shear fracture. Int J Fract 37: 137–159Google Scholar
  8. Edde FC, Verreman Y (1995) Nominally constant strain energy release rate specimen for the study of mode II fracture and fatigue in adhesively bonded joints. Int J Adhes Adhes 15: 29–32. doi:10.1016/0143-7496(95)93640-7 CrossRefGoogle Scholar
  9. Giambanco G, Scimemi GF (2006) Mixed mode failure analysis of bonded joints with rate-dependent interface models. Int J Numer Methods Eng 67: 1160–1192. doi:10.1002/nme.1671 MATHCrossRefGoogle Scholar
  10. Jacob GC, Starbuck JM, Fellers JF, Simunovic S, Boeman RG (2005) The effect of loading rate on the fracture toughness of fiber reinforced polymer composites. J Appl Polym Sci 96: 899–904. doi:10.1002/app.21535 CrossRefGoogle Scholar
  11. Leffler K, Alfredsson KS, Stigh U (2007) Shear behaviour of adhesive layers. Int J Solids Struct 44: 530–545. doi:10.1016/j.ijsolstr.2006.04.036 MATHCrossRefGoogle Scholar
  12. Li S, Thouless MD, Waas AM, Schroeder JA, Zavattieri PD (2006) Competing failure mechanisms in mixed-mode fracture of an adhesively bonded polymer-matrix composite. Int J Adhes Adhes 26: 609–616. doi:10.1016/j.ijadhadh.2005.07.010 CrossRefGoogle Scholar
  13. Li S, Thouless MD, Waas AM, Schroeder JA, Zavattieri PD (2006) Mixed-mode cohesive-zone models for fracture of an adhesively-bonded polymer-matrix composite. Eng Fract Mech 73: 64–78. doi:10.1016/j.engfracmech.2005.07.004 CrossRefGoogle Scholar
  14. Liechti KM, Wu J (2001) Mixed-mode, time-dependent rubber/metal debonding. J Mech Phys Solids 49: 1039–1072. doi:10.1016/S0022-5096(00)00065-X MATHCrossRefADSGoogle Scholar
  15. Parmigiani JP, Thouless MD (2007) The effects of cohesive strength and toughness on mixed-mode delamination of beam-like geometries. Eng Fract Mech 74: 2675–2699. doi:10.1016/j.engfracmech.2007.02.005 CrossRefGoogle Scholar
  16. Qiao P, Wang J, Davalos JF (2003) Analysis of tapered ENF specimen and characterization of bonded interface fracture under mode II loading. Int J Solids Struct 40: 1865–1884. doi:10.1016/S0020-7683(03)00031-3 MATHCrossRefGoogle Scholar
  17. Sun C (2007) Fracture of plastically-deforming, adhesively-bonded structures: experimental and numerical Studies. PhD dissertation, University of Michigan, Ann Arbor, MIGoogle Scholar
  18. Sun X, Davidson BD (2006) Numerical evaluation of the effects of friction and geometric nonlinearities on the energy release rate in three- and four-point bend end-notched flexure tests. Eng Fract Mech 73: 1343–1361. doi:10.1016/j.engfracmech.2005.11.007 CrossRefGoogle Scholar
  19. Sun C, Thouless MD, Waas AM, Schroeder JA, Zavattieri PD (2008) Ductile-brittle transitions in the fracture of plastically-deforming, adhesively-bonded structures: I experimental studies. Int J Solids Struct 45: 3059–3073. doi:10.1016/j.ijsolstr.2008.01.011 CrossRefGoogle Scholar
  20. Sun C, Thouless MD, Waas AM, Schroeder JA, Zavattieri PD (2008) Ductile-brittle transitions in the fracture of plastically-deforming, adhesively-bonded structures: II numerical studies. Int J Solids Struct 45: 4725–4738. doi:10.1016/j.ijsolstr.2008.04.007 CrossRefGoogle Scholar
  21. Sun C, Thouless MD, Waas AM, Schroeder JA, Zavattieri PD (2009) Rate effects for mixed-mode fracture of plastically-deforming, adhesively-bonded structures. Int J Adhes Adhes 29: 434–443. doi:10.1016/j.ijadhadh.2008.09.003 CrossRefGoogle Scholar
  22. Tvergaard V, Hutchinson JW (1992) The relation between crack-growth resistance and fracture process parameters in elastic plastic solids. J Mech Phys Solids 40: 1377–1397. doi:10.1016/0022-5096(92)90020-3 MATHCrossRefADSGoogle Scholar
  23. Ungsuwarungsri T, Knauss WG (1987) Role of damage-softened material behavior in the fracture of composites and adhesives. Int J Fract 35: 221–241. doi:10.1007/BF00015590 CrossRefGoogle Scholar
  24. Xie D, Waas AM, Shahwan KW, Schroeder JA, Boeman RG (2005) Fracture criterion for kinking cracks in a tri-material adhesively bonded joint under mixed mode loading. Eng Fract Mech 72: 2487–2504. doi:10.1016/j.engfracmech.2005.03.008 CrossRefGoogle Scholar
  25. Yang QD, Thouless MD (2001) Mixed-mode fracture analyses of plastically-deforming adhesive joints. Int J Fract 110: 175–187. doi:10.1023/A:1010869706996 CrossRefGoogle Scholar
  26. Yang QD, Thouless MD, Ward SM (1999) Numerical simulations of adhesively bonded beams failing with extensive plastic deformation. J Mech Phys Solids 47: 1337–1353. doi:10.1016/S0022-5096(98)00101-X MATHCrossRefADSGoogle Scholar
  27. Yang QD, Thouless MD, Ward SM (2001) Elastic-plastic mode-II fracture of adhesive joints. Int J Solids Struct 38: 3251–3262. doi:10.1016/S0020-7683(00)00221-3 MATHCrossRefGoogle Scholar
  28. Zhu Y, Liechti KM, Ravi-Chandar K (2009) Direct extraction of rate-dependent traction–separation laws for polyurea/steel interfaces. Int J Solids Struct 46: 31–51. doi:10.1016/j.ijsolstr.2008.08.019 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Department of Mechanical EngineeringUniversity of MichiganAnn ArborUSA
  3. 3.Department of Materials Science and EngineeringUniversity of MichiganAnn ArborUSA
  4. 4.General Motors Research and DevelopmentWarrenUSA

Personalised recommendations