Determination of the energy for crack creation using micro-hardness measures
Review Article
First Online:
Received:
Accepted:
Abstract
The growth of crack is related to the existence of a plastic zone at the crack tip; whose formation and growth is accompanied by energy dissipation. The estimation of this energy is generally done by the so called global methods (hysterisis loops) or the micro-gages. In the present study, the micro-hardness measures in the plastic zone are used to evaluate the energy dissipated in the fracture process zone by plastic deformation. The obtained results on the aluminium alloy 7075 T7 and E460 steel are compared to those obtained by other methods.
Keywords
Plastic zone Energy Micro-hardness measuresReferences
- ASTM (1999) Standard test method for measurement of fatigue crack growth rates, E 647-96. Annual Book of ASTM Standards, vol 03.01Google Scholar
- Bilby BA, Cottrell AH, Swinden KH (1963) The spread of plastic yield from a notch. Proc R Soc Lond A 272: 304–314CrossRefADSGoogle Scholar
- Davidson DL, Lankford J (1980) Proceedings of the symposium of environment sensitive fracture of engineering materials, TMS ASME, Warrendale pp 59Google Scholar
- Gross TS, Weertman J (1982) Calorimetric measurement of the plastic work of fatigue crack propagation in 4140 steel. J Metall Mater Trans A 13: 2165–2172 doi:10.1007/BF02648386 CrossRefADSGoogle Scholar
- Grossetete V (1988) mémoire de D.E.A, Ecole Nationale de Mécanique et d’Aéronautique, Poitiers, FranceGoogle Scholar
- Ikeda S, Izumi Y, Fine ME (1977) Plastic work during fatigue crack propagation in a high strength low alloy steel and in 7050 Al-alloy. Eng Fract Mech 9: 123–136 doi:10.1016/0013–7944(77)90057-1 CrossRefGoogle Scholar
- Izumi Y, Fine ME (1979) Role of plastic work in fatigue crack propagation in metals. Eng Fract Mech 11: 791–804 doi:10.1016/0013-7944(79)90137-1 CrossRefGoogle Scholar
- Jendoubi K (1987) thèse Doctorat de l’Université de Poitiers, No. 112Google Scholar
- Kikukawa M, Jono M, Hora H (1977) Fatigue crack propagation and closure behavior under plane strain condition. Int J Fract 13: 699–701 doi:10.1007/BF00017303 CrossRefGoogle Scholar
- Lehr P, Khadraoui M (1983a) Comportement en fatigue oligocyclique de l’alliage d’aluminium 7075—Rapport de recherche 175Google Scholar
- Lehr P, Khadraoui M (1983b) Comportement en fatigue oligocyclique de l’acier E460—Rapport de recherche 186Google Scholar
- Liaw PK, Fine ME, Davidson DL (1980) Comparison of plastic work of fatigue crack propagation in low carbon steel measured by strain-gages and electron channeling. Fatigue & Fract Eng Mater Struct 3: 59–74 doi:10.1111/j.1460-2695.1980.tb01104.x CrossRefGoogle Scholar
- Liaw PK, Kwun SI, Fine ME (1981)Plastic work of fatigue propagation in steels and aluminum alloys. Metall Trans A 12: 49–55CrossRefGoogle Scholar
- Ludwik P (1915) Uber die Anderung der Festigkeitseigenschatfen der Metalle bei wechselnder Beanpruchung. Z Metallk 11: 157–168Google Scholar
- Purcell AH, Weertman J (1974) Crack tip area in fatigued copper single crystals. J Metall Mater Trans B 5: 1805–1809 doi:10.1007/BF02644144 ADSGoogle Scholar
- Ranganathan N, Jendoubi K, Benguediab M, Petit J (1987) Effect of R ratio and [Delta]K level on the hysteretic energy dissipated during fatigue crack propagation. Scr Metall 21: 1045–1049 doi:10.1016/0036-9748(87)90247-X CrossRefGoogle Scholar
- Weertman J (1973) Theory of fatigue crack growth based on a BCS crack theory with work hardening. Int J Fract 9: 125–131 doi:10.1007/BF00041854 CrossRefGoogle Scholar
- Wilkins MA, Smith GC (1970) Dislocation structures near a propagating fatigue crack in an Al-1/2% Mg alloy. Acta Metall 18: 1035 doi:10.1016/0001-6160(70)90059-3 CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media B.V. 2009