Mode I fracture of adhesive joints using tailored cohesive zone models

  • M. AlfanoEmail author
  • F. Furgiuele
  • A. Leonardi
  • C. Maletta
  • G. H. Paulino
Original Paper


Cohesive zone models are explored in order to study cleavage fracture in adhesive bonded joints. A mode I cohesive model is defined which correlates the tensile traction and the displacement jump (crack faces opening) along the fracture process zone. In order to determine the traction-separation relation, the main fracture parameters, namely the cohesive strength and the fracture energy, as well as its shape, must be specified. However, owing to the difficulties associated to the direct measurement of the fracture parameters, very often they are obtained by comparing a measured fracture property with numerical predictions based on an idealized traction separation relation. Likewise in this paper the cohesive strength of an adhesive layer sandwiched between elastic substrates is adjusted to achieve a match between simulations and experiments. To this aim, the fracture energy and the load-displacement curve are adopted as input in the simulations. In order to assess whether or not the shape of the cohesive model may have an influence on the results, three representative cohesive zone models have been investigated, i.e. exponential, bilinear and trapezoidal. A good agreement between experiments and simulations has been generally observed. However, a slight difference in predicting the loads for damage onset has been found using the different cohesive models.


Adhesives Cohesive zone model Cohesive zone model shape Fracture energy 


  1. ABAQUS user’s manual (2002) v6.5-1. Pawtucket, USA, Hibbit, HKS IncGoogle Scholar
  2. Akisanya AR, Fleck NA (1992) Brittle fracture of adhesive joints. Int J Fract 58(2): 93–114. doi: 10.1007/BF00019971 CrossRefADSGoogle Scholar
  3. Alfano G (2006a) On the influence of the shape of the interface law on the application of cohesive zone models. Compos Sci Technol 66(6): 723–730. doi: 10.1016/j.compscitech.2004.12.024 CrossRefGoogle Scholar
  4. Alfano M (2006b) Cohesive zone modeling of mode I fracture in adhesive joints. Technical Report, University of Illinois at Urbana Champaign, IllinoisGoogle Scholar
  5. Alfano M, Furgiuele F, Leonardi L, Maletta C, Paulino GH (2007) Fracture analysis of adhesive joints using intrinsic cohesive zone model. Key Eng Mater 348: 13–16CrossRefGoogle Scholar
  6. ASTM D3433 (1999) Standard test method for fracture strength in cleavage of adhesives in bonded metal joints. American Society for Testing and Material, Philadelphia, PA, USA (Re-approved 2005)Google Scholar
  7. Barenblatt GI (1962) Mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7: 55–129CrossRefMathSciNetGoogle Scholar
  8. Blackman B, Dear JP, Kinloch AJ et al (1991) The calculation of adhesive fracture energies from double-cantilever beam test specimens. J Mater Sci Lett 10(5): 253–256. doi: 10.1007/BF00735649 CrossRefGoogle Scholar
  9. Blackman B, Kinloch AJ, Paraschi M et al (2003a) Measuring the mode I adhesive fracture energy, GIC, of structural adhesive joints: the results of an international round-robin. Int J Adhes Adhes 23(4): 293–305. doi: 10.1016/S0143-7496(03)00047-2 CrossRefGoogle Scholar
  10. Blackman B, Hadavinia H, Kinloch AJ et al (2003b) The calculation of adhesive fracture energies in mode I: revisiting the tapered double cantilever beam (TDCB) test. Eng Fract Mech 70(2): 233–248. doi: 10.1016/S0013-7944(02)00031-0 CrossRefGoogle Scholar
  11. Blackman B, Hadavinia H, Kinloch AJ et al (2003c) The use of a cohesive zone model to study the fracture of fibre composites and adhesively-bonded joints. Int J Fract 119(1): 25–46. doi: 10.1023/A:1023998013255 CrossRefGoogle Scholar
  12. Camacho GT, Ortiz M (1996) Computational modeling of impact damage in brittle materials. Int J Solids Struct 33(20–22): 2899–2938. doi: 10.1016/0020-7683(95)00255-3 zbMATHCrossRefGoogle Scholar
  13. Cox BN, Marshall DB (1991) The determination of crack bridging forces. Int J Fract 49(3): 159–176Google Scholar
  14. Dugdale DS (1960) Yielding steel sheets containing slits. J Mech Phys Solids 8: 100–104. doi: 10.1016/0022-5096(60)90013-2 CrossRefADSGoogle Scholar
  15. Ferracin T, Landis CM, Delannay F et al (2003) On the determination of the cohesive zone properties of an adhesive layer form the analysis of the wedge peel test. Int J Solids Struct 40(11): 2889–2904. doi: 10.1016/S0020-7683(03)00076-3 zbMATHCrossRefGoogle Scholar
  16. Goglio L, Rossetto M (2002) Ultrasonic testing of anaerobic bonded joints. Ultrasonics 40(1–8): 205–210PubMedCrossRefGoogle Scholar
  17. Kafkalidis MS, Thouless MD, Yang QD, Ward SM (2000) Deformation and fracture of adhesive layers constrained by plastically-deforming adherends. J Adhes Sci Technol 14(13): 1593–1607. doi: 10.1163/156856100742401 CrossRefGoogle Scholar
  18. Kinloch AJ (1986) Adhesion and adhesives, science and technology. Chapman & Hall, LondonGoogle Scholar
  19. Liljedhal CDM, Crocombe AD, Wahab MA et al (2006) Damage modeling of adhesively bonded joints. Int J Fract 141(1–2): 147–161. doi: 10.1007/s10704-006-0072-9 CrossRefGoogle Scholar
  20. Martiny P, Lani F, Kinloch AJ et al (2008) Numerical analysis of the energy contributions in peel tests: a steady-state multilevel finite element approach. Int J Adhes Adhes 28(4–5): 222–236. doi: 10.1016/j.ijadhadh.2007.06.005 CrossRefGoogle Scholar
  21. Mostovoy S, Ripling EJ (1971) Effect of joint geometry on the toughness of epoxy adhesives. J Appl Polym Sci 15(3): 661–673. doi: 10.1002/app.1971.070150312 CrossRefGoogle Scholar
  22. Pardoen T, Ferracin T, Landis CM et al (2005) Constraint effect in adhesive joint fracture. J Mech Phys Solids 53(9): 1951–1983. doi: 10.1016/j.jmps.2005.04.009 zbMATHCrossRefADSGoogle Scholar
  23. Park K, Paulino GH, Roesler JR (2008) Determination of the kink point in the bilinear softening model for concrete. Eng Fract Mech 75(13): 3806–3818. doi: 10.1016/j.engfracmech.2008.02.002 CrossRefGoogle Scholar
  24. Pirondi A, Nicoletto G (2000) Comportamento a frattura di un adesivo strutturale. Proceedings of the 15th National Congress of the Italian Group of Fracture, IGF XV, May 3rd–5th 2000, Bari, Italy, pp 459–466 (in Italian)Google Scholar
  25. Roesler JR, Paulino GH, Park K et al (2007a) Concrete fracture prediction using bilinear softening. Cement Concr Compos 29(4): 300–312. doi: 10.1016/j.cemconcomp.2006.12.002 CrossRefGoogle Scholar
  26. Roesler JR, Paulino GH, Gaedicke C et al (2007b) Fracture behavior of functionally graded concrete materials (FGCM) for rigid pavements. Transp Res Rec 2037: 40–49. doi: 10.3141/2037-04 CrossRefGoogle Scholar
  27. Scheider I, Brocks W (2006) Cohesive elements for thin walled structures. Comput Mater Sci 37(1–2): 101–109. doi: 10.1016/j.commatsci.2005.12.042 CrossRefGoogle Scholar
  28. Shet C, Chandra N (2004) Effect of the shape of T-δ cohesive zones curves on the fracture response. Mech Adv Mater Struct 11(3): 249–275. doi: 10.1080/15376490490427207 CrossRefGoogle Scholar
  29. Song SH, Paulino GH, Buttlar WG (2006a) Simulation of crack propagation in asphalt concrete using an intrinsic cohesive zone model. J Eng Mech 132(11): 1215–1223. doi: 10.1061/(ASCE)0733-9399(2006)132:11(1215) CrossRefGoogle Scholar
  30. Song SH, Paulino GH, Buttlar WG (2006b) A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material. Eng Fract Mech 73(18): 2829–2848. doi: 10.1016/j.engfracmech.2006.04.030 CrossRefGoogle Scholar
  31. Song SH, Paulino GH Buttlar WG (2008) Influence of the cohesive zone model shape parameter on asphalt concrete fracture. In: Multiscale and Functionally Graded Materials 2006, edited by Paulino GH et al, 2008 American Institute of Physics Conference Proceedings, pp. 730–735Google Scholar
  32. Sorensen B, Jacobsen K (2003) Determination of cohesive laws by the J integral approach. Eng Fract Mech 70(14): 1841–1858. doi: 10.1016/S0013-7944(03)00127-9 CrossRefGoogle Scholar
  33. Tvergaard V, Hutchinson JW (1996) On the toughness of ductile adhesive joints. J Mech Phys Solids 44(5): 789–800. doi: 10.1016/0022-5096(96)00011-7 CrossRefADSGoogle Scholar
  34. Volokh KY (2004) Comparison between cohesive zone models. Commun Numer Methods Eng 20(11): 845–856. doi: 10.1002/cnm.717 zbMATHCrossRefGoogle Scholar
  35. Williams JG, Hadavinia H (2002) Analytical solutions for cohesive zone models. J Mech Phys Solids 50(4): 809–825. doi: 10.1016/S0022-5096(01)00095-3 zbMATHCrossRefADSGoogle Scholar
  36. Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9): 1397–1434. doi: 10.1016/0022-5096(94)90003-5 zbMATHCrossRefADSGoogle Scholar
  37. Xu C, Siegmund T, Ramani K (2003) Rate dependent crack growth in adhesives I. Modelling approach. Int J Adhes Adhes 23(1): 9–13. doi: 10.1016/S0143-7496(02)00062-3 Google Scholar
  38. Yang QD, Thouless MD, Ward SM (1999) Numerical simulations of adhesively bonded beams failing with extensive plastic deformation. J Mech Phys Solids 47(6): 1337–1353. doi: 10.1016/S0022-5096(98)00101-X zbMATHCrossRefADSGoogle Scholar
  39. Yuan H, Xu Y (2008) Computational fracture mechanics assessment of adhesive joints. Comput Mater Sci 43(1): 146–156. doi: 10.1016/j.commatsci.2007.07.053 CrossRefGoogle Scholar
  40. Zavattieri PD, Espinosa HD (2001) Grain level analysis of crack initiation and propagation in brittle materials. Acta Mater 49(20): 4291–4311. doi: 10.1016/S1359-6454(01)00292-0 CrossRefGoogle Scholar
  41. Zhang Z (2007) Extrinsic cohesive modeling of dynamic fracture and microbranching instability using a topological data structure. PhD Dissertation, University of Illinois at Urbana-ChampaignGoogle Scholar
  42. Zhang Z, Paulino GH (2005) Cohesive zone modeling of dynamic failure in homogeneous and functionally graded materials. Int J Plast 21(16): 1195–1254. doi: 10.1016/j.ijplas.2004.06.009 zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • M. Alfano
    • 1
    Email author
  • F. Furgiuele
    • 1
  • A. Leonardi
    • 1
  • C. Maletta
    • 1
  • G. H. Paulino
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of CalabriaArcavacata di RendeItaly
  2. 2.Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana-Champaign, Newmark LaboratoryUrbanaUSA

Personalised recommendations