Brittle Fracture Analysis Using a Ring-Shape Specimen Containing Two Angled Cracks

Letters in fracture and micromechanics


A ring shaped specimen is used for studying mixed mode fracture in brittle materials. The ring specimen is subjected to a compressive diametral load and contains two angled central cracks. A series of fracture tests are conducted under various mode mixities using the ring specimen. It is shown that the obtained experimental results are in a very good agreement with theoretical predictions of the modified maximum tangential stress criterion.


ring specimen mixed mode loading brittle materials fracture criterion 


  1. Aliha M.R.M., Ayatollahi M.R., Ashtari R. (2006) Mode I and mode II fracture toughness testing for a coarse grain marble. Applied Mechanics and Materials 5-6: 181–188CrossRefGoogle Scholar
  2. Chang S.H., Lee C.I., Jeon S. (2002) Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc- type specimen. Engineering Geology 66: 79–97CrossRefGoogle Scholar
  3. Erdogan F., Sih G.C. (1963) On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering, Transactions of ASME 85: 519–525Google Scholar
  4. Huang J., Wang S. (1985) An experimental investigation concerning the comprehensive fracture toughness of some brittle rocks. International Journal of Rock Mechanics Mining Science & Geomechincs Abstract 22(2): 99–104CrossRefGoogle Scholar
  5. Hussain, M.A., Pu, S.L. and Underwood, J. (1974). Strain energy release rate for a crack under combined mode I and Mode II. Fracture Analysis. ASTM STP 560, Philadelphia 2-28.Google Scholar
  6. Khan K., Al-Shayea N.A. (2000) Effect of specimen geometry and testing method on mixed I-II fracture toughness of a limestone rock from Saudi Arabia. Rock Mechanics and. Rock Engineering 33((3): 179–206CrossRefGoogle Scholar
  7. Krishnan G.R., Zhao X.L., Zaman M., Roegiers J.C. (1998) Fracture toughness of a soft sandstone. International Journal of Rock Mechanics Mining Science 35(6): 695–710CrossRefGoogle Scholar
  8. Lim I.L., Johnston I.W., Choi S.K., Boland J.N. (1994) Fracture testing of a soft rock with semi-circular specimens under three-point bending, Part 2 - mixed mode. International Journal of Rock Mechanics Mining Science & Geomechincs Abstract 31(3): 199–212CrossRefGoogle Scholar
  9. Schmidt, R.A. (1980). A microcrack model and its significance to hydraulic fracturing and fracture toughness testing. In: Proceedings of 21st US symposium rock mechanics 581–590.Google Scholar
  10. Sih G.C. (1974) Strain-energy-density factor applied to mixed mode crack problems. International Journal of fracture 10: 305–321CrossRefGoogle Scholar
  11. Shiryaev A.M., Kotkis A.M. (1982) Methods for determining fracture toughness of brittle porous materials. Industrial Laboratory 48(9): 917–918Google Scholar
  12. Smith D.J., Ayatollahi M.R., Pavier M.J. (2001) The role of T-stress in brittle fracture for linear elastic materials under mixed mode loading. Fatigue and Fracture of Engineering Materials and Structures 24: 137–150CrossRefGoogle Scholar
  13. Xeidakis G.S., Samaras I.S., Zacharopoulos D.A., Papakalitakis G.E. (1996) Crack growth in a mixed- mode loading on marble beams under three point bending. International Journal of Fracture 79: 197–208CrossRefGoogle Scholar
  14. Zipf R.K., Bieniawski Z.T. (1990) Mixed- mode fracture toughness testing of coal. International Journal of Rock Mechanics Mining Science & Geomechincs Abstract 27(6): 479–493CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • M. R. M. Aliha
    • 1
  • M. R. Ayatollahi
    • 1
  • R. Pakzad
    • 1
  1. 1.Fatigue and Fracture Laboratory, Department of Mechanical EngineeringIran University of Science and TechnologyNarmak, TehranIran

Personalised recommendations