Advertisement

International Journal of Fracture

, Volume 150, Issue 1–2, pp 227–240 | Cite as

Dynamic fracture as a process of nonlinear damage wave propagation

  • A. V. Kashtanov
  • Yu. V. Petrov
  • N. Pugno
  • A. Carpinteri
Original Paper

Abstract

A new approach describing the dynamic fracture as a process of nucleation and subsequent propagation of a nonlinear wave of microfracture is proposed. The equation describing the microfracture evolution is derived from the transfer equation and a stochastic diffusion-type description of damage redistribution. The physical meaning of the corresponding parameters is clarified by the mass conservation and the incubation time criterion of fracture. Finally the process of dynamic macrocrack nucleation is simulated.

Keywords

Dynamic fracture Fracture wave Damage evolution Dynamic crack propagation Fracture simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bratov V, Petrov Y (2007a) Application of incubation time approach to simulate dynamic crack propagation. Int J Fract 146: 53–60CrossRefGoogle Scholar
  2. Bratov V, Petrov Y (2007b) Optimizing energy input for fracture by analysis of the energy required to initiate dynamic mode I crack growth. Int J Solid Struct 44: 2371–2380CrossRefGoogle Scholar
  3. Carpinteri A (1994) Scaling laws and renormalization groups for strength and toughness of disordered materials. Int J Solid Struct 31: 291–302CrossRefGoogle Scholar
  4. Godunov SK, Ryaben’kii VS (1987) Difference schemes: an introduction to underlying theory. North-Holland, New YorkGoogle Scholar
  5. Homma H, Shockey DA, Murayama Y (1983) Response of cracks in structural materials to short pulse loads. J Mech Phys Solids 31(3): 261–279CrossRefGoogle Scholar
  6. Kashtanov AV, Petov YuV (2007) Kinetic description of incubation processes under dynamic fracture. Dokl Phys 52: 270–273CrossRefGoogle Scholar
  7. Kolmogorov AN, Petrovsky IG, Piskunov NS (1937) Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull Univ d’Etat Moscou, Série Int A 1: 1–26Google Scholar
  8. Morozov NF, Petrov YV (2000) Dynamics of fracture. Springer-Verlag, BerlinGoogle Scholar
  9. Morozov NF, Petrov YV, Utkin AA (1990) On the analysis of spalling on the basis of structural fracture mechanics. Dokl Akad Nauk USSR 313:276–279 (in Russian)Google Scholar
  10. Petrov YV (1991) On “quantum” nature of dynamic fracture of brittle solids. Dokl Akad Nauk USSR 321:66–68 (in Russian)Google Scholar
  11. Petrov YV (1996) Quantum analogy in the mechanics of fracture of solids. Phys Solid State 38: 1846–1850Google Scholar
  12. Petrov YV (2004) Incubation time criterion and the pulsed strength of continua: fracture, cavitation, and electrical breakdown. Dokl Phys 49: 246–249CrossRefGoogle Scholar
  13. Petrov YuV, Sitnikova EV (2004) Dynamic cracking resistance of structural materials predicted from impact fracture of an aircraft alloy. Tech Phys 1: 57–60CrossRefGoogle Scholar
  14. Petrov YuV, Utkin AA (1989) On rate dependences of dynamic fracture toughness. Sov Mater Sci 25(2): 153–156CrossRefGoogle Scholar
  15. Petrov YV, Morozov NF, Smirnov VI (2003) Structural macromechanics approach in dynamics of fracture. Fatigue Fract Eng Mater Struct 26: 363–372CrossRefGoogle Scholar
  16. Pugno N (2006) Dynamic quantized fracture mechanics. Int J Fract 140: 158–168CrossRefGoogle Scholar
  17. Ravi-Chandar K, Knauss WG (1984a) An experimental investigation into dynamic fracture: I. Crack initiation and arrest. Int J Fract 25: 247–262CrossRefGoogle Scholar
  18. Ravi-Chandar K, Knauss WG (1984b) An experimental investigation into dynamic fracture: II. Microstructural aspects. Int J Fract 26: 65–80CrossRefGoogle Scholar
  19. Zeldovich YaB, Barenblatt GI, Librovich VB, Makhviladze GM (1985) Mathematical theory of combustion and explosions. Consultants Bureau, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • A. V. Kashtanov
    • 1
  • Yu. V. Petrov
    • 1
  • N. Pugno
    • 2
  • A. Carpinteri
    • 2
  1. 1.St.-Petersburg State UniversitySt.-PetersburgRussia
  2. 2.Politecnico di TorinoTurinItaly

Personalised recommendations