Advertisement

International Journal of Fracture

, Volume 146, Issue 1–2, pp 53–60 | Cite as

Application of incubation time approach to simulate dynamic crack propagation

  • V. Bratov
  • Y. Petrov
Original Paper

Abstract

The incubation time criterion for dynamic fracture is applied to simulate dynamic crack propagation. Being incorporated into ANSYS finite element package, this criterion is used to simulate the classical dynamic fracture experiments of Ravi-Chandar and Knauss on dynamic crack propagation in Homalite-100. In these experiments a plate with a cut simulating the crack was loaded by an intense pressure pulse applied on the faces of the cut. The load consisted of two consequent trapezoidal pulses. This, in the experimental conditions used by Ravi-Chandar and Knauss, resulted in a crack initiation, propagation, arrest and reinitiation. Dependence of the crack length on time was measured in those experiments. The results for crack propagation obtained by FEM modelling are in agreement with experimental measurements of crack length histories. This result shows the applicability of the incubation time approach to describe the initiation, propagation and arrest of dynamically loaded cracks.

Keywords

Dynamic fracture Incubation time Crack initiation Propagation Arrest FEM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achenbach JD (1974) Dynamic effects in brittle fracture. In: Nemat-Nasser S et al (eds) Mechanics today, 1. Pergamon, Elmsford, NY, pp 1–57Google Scholar
  2. ANSYS (2006). User’s Guide, Release 11.0. ANSYS Inc., Pennsylvania, USA Google Scholar
  3. Atkinson C and Eshelby JD (1968). The flow of energy into the tip of a moving crack. Int J Fract 4: 3–8 CrossRefGoogle Scholar
  4. Atroshenko SA, Krivosheev SI and Petrov YV (2002). Crack propagation upon dynamic failure of polymethylmethacrylate. Tech Phys 47: 194–199 CrossRefGoogle Scholar
  5. Barenblatt GI (1962). The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7: 55–129 CrossRefGoogle Scholar
  6. Bradley WB and Kobayashi AS (1970). An investigation of propagating crack by dynamic photoelasticity. Exp Mech 10: 106–113 CrossRefGoogle Scholar
  7. Bratov V, Gruzdkov A, Krivosheev S and Petrov Y (2004). Energy balance in the crack growth initiation under pulsed-load conditions. Doklady Phys 49: 338–341 CrossRefGoogle Scholar
  8. Bratov V and Petrov Y (2007). Optimizing energy input for fracture by analysis of the energy required to initiate dynamic mode I crack growth. Int J Solid Struct 44: 2371–2380 CrossRefGoogle Scholar
  9. Broberg KB (1960). The propagation of a brittle crack. Archiv fur Fysik 18: 159–192 Google Scholar
  10. Broberg KB (1989). The near-tip field at high crack velocities. Int J Fract 39: 1–13 CrossRefGoogle Scholar
  11. Camacho GT and Ortiz M (1996). Computational modelling of impact damage in brittle materials. Int J Solid Struct 33: 2899–2938 CrossRefGoogle Scholar
  12. Dally JW (1979). Dynamic photoelastic studies of fracture. Exp Mech 19: 349–361 CrossRefGoogle Scholar
  13. Dally JW and Shukla A (1980). Energy loss in Homalite-100 during crack propagation and arrest. Eng Fract Mech 13: 807–817 CrossRefGoogle Scholar
  14. Dally JW and Barker DB (1988). Dynamic measurements of initiation toughness at high loading rate. Exp Mech 28: 298–303 CrossRefGoogle Scholar
  15. Freund LB (1972a). Crack propagation in an elastic solid subjected to general loading. I: Constant rate of extension. J Mech Phys Solid 20: 129–140 CrossRefGoogle Scholar
  16. Freund LB (1972b). Crack propagation in an elastic solid subjected to general loading. II: Nonuniform rate of extension. J Mech Phys Solid 20: 141–152 CrossRefGoogle Scholar
  17. Freund LB (1972c). Energy flux into the tip of an extending crack in an elastic solid. J Elast 2: 341–349 Google Scholar
  18. Freund LB (1990). Dynamic fracture mechanics. Cambridge University Press, Cambridge Google Scholar
  19. Homma H, Kanto Y and Tanka K (1992). Rapid load fracture testing. In: Chona, R and Corwin, WR (eds) Cleavage fracture under short stress pulse loading at low temperatures, ASTM STP 1130, pp 37–49. American society for testing and materials, Philadelphia Google Scholar
  20. Hopkinson J (1901) Original Papers. Cambridge University PressGoogle Scholar
  21. Kalthoff JF (1986). Fracture behavior under high rates of loading. Eng Fract Mech 23: 289–298 CrossRefGoogle Scholar
  22. Kobayashi AS, Wade BG, Bradley WB and Chiu ST (1974). Crack branching in Homalite-100 plates. Eng Fract Mech 6: 81–92 CrossRefGoogle Scholar
  23. Kostrov BV (1966). Unsteady propagation of longitudinal shear cracks. Appl Math Mech 30: 1241–1248 CrossRefGoogle Scholar
  24. Kostrov BV and Nikitin LV (1970). Some general problems of mechanics of brittle fracture. Archiwum Mechaniki Stosowanej 22: 749–775 Google Scholar
  25. Ma CC and Freund LB (1986). The extent of the stress intensity factor field during crack growth under dynamic loading conditions. ASME J Appl Mech 53: 303–310 CrossRefGoogle Scholar
  26. Morozov N and Petrov Y (2000). Dynamics of fracture. Springer-Verlag, Berlin Google Scholar
  27. Owen DM, Zhuang S, Rosakis AJ and Ravichandran G (1998). Experimental determination of dynamic crack initiation and propagation fracture toughness in aluminum sheets. Int J Fract 90: 153–174 CrossRefGoogle Scholar
  28. Petrov YV (1991). On “Quantum” Nature of Dynamic Fracture of Brittle Solids. Doklady Akademii Nauk USSR 321: 66–68 Google Scholar
  29. Petrov YV and Morozov NF (1994). On the modeling of fracture of brittle solids. J Appl Mech 61: 710–712 Google Scholar
  30. Petrov YV, Morozov NF and Smirnov VI (2003). Structural micromechanics approach in dynamics of fracture. Fatig Fract Eng Mater Struct 26: 363–372 CrossRefGoogle Scholar
  31. Petrov YV (2004). Incubation time criterion and the pulsed strength of continua: fracture, cavitation and electrical breakdown. Doklady Phys 49: 246–249 CrossRefGoogle Scholar
  32. Petrov Y and Sitnikova E (2005). Temperature dependence of spall strength and the effect of anomalous melting temperatures in shock-wave loading. Tech Phys 50: 1034–1037 CrossRefGoogle Scholar
  33. Ravi-Chandar K and Knauss WG (1984a). An experimental investigation into dynamic fracture: I. Crack initiation and arrest. Int J Fract 25: 247–262 CrossRefGoogle Scholar
  34. Ravi-Chandar K and Knauss WG (1984b). An experimental investigation into dynamic fracture: II. Microstructural aspects. Int J Fract 26: 65–80 CrossRefGoogle Scholar
  35. Ravi-Chandar K and Knauss WG (1984c). An experimental investigation into dynamic fracture: III. On steady state crack propagation and crack brunching. Int J Fract 26: 141–154 CrossRefGoogle Scholar
  36. Ravi-Chandar K and Knauss WG (1984d). An experimental investigation into dynamic fracture: IV. On the interaction of stress waves with propagating cracks. Int J Fract 26: 189–200 CrossRefGoogle Scholar
  37. Ravi-Chandar K and Knauss WG (1987). On the characterization of the transient stress field near the tip of a crack. J Appl Mech 54: 72–78 CrossRefGoogle Scholar
  38. Remmers JJC, Borst R de and Needleman A (2004). A cohesive segments approach for dynamic crack growth. In: Ahzi, S, Cherkaoui, M, Khaleel, MA, Zbib, HM, Zikry, MA, and Lamatina, B (eds) Multiscale modeling and characterization of eleastic-inelastic behavior of engineering materials, pp 299–306. Kluwer, Dordrecht Google Scholar
  39. Rizal S and Homma H (2000). Dimple fracture under short pulse loading. Int J Impact Eng 90: 83–102 Google Scholar
  40. Rosakes AJ and Zehnder AT (1985). On dynamic fracture of structural metals. Int J Fract 27: 169–186 CrossRefGoogle Scholar
  41. Schardin H and Struth W (1938). Hochfrequezkinematographische untersuchung der bruchvorgänge in glas. Glastechnische Berichte 16: 219 Google Scholar
  42. Shokey DA (1986). Short pulse fracture mechanics. J Eng Fract Mech 23: 311–319 CrossRefGoogle Scholar
  43. Smith GC (1975) An experimental investigation of the fracture of a brittle material, Ph.D. Thesis, California Institute of TechnologyGoogle Scholar
  44. Wallner H (1938). Linienstrukturen an bruchflächen. Z. Physik 114: 368–370 CrossRefGoogle Scholar
  45. Wells AA and Post D (1958). The dynamic stress distribution surrounding a running crack—A photoelastic analysis. Proc Soc Exp Stress Anal 16: 69–93 Google Scholar
  46. Willis JR (1975). Equations of motion for propagating crack. Mech Phys Frac, The Metals Soc, London 1: 57–67 Google Scholar
  47. Xu X and Needleman A (1995). Numerical simulations of dynamic crack growth along an interface. Int J Fract 74: 289–324 CrossRefGoogle Scholar
  48. Yoffe EH (1951). The moving Griffith crack. Phil Mag 42: 739–750 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Institute of Problems of Mechanical Engineering RASSt.-PetersburgRussia
  2. 2.St.-Petersburg State UniversitySt.-PetersburgRussia

Personalised recommendations