International Journal of Fracture

, Volume 142, Issue 3–4, pp 299–306 | Cite as

Cross-Property Connections for Fiber-Reinforced Composites with Transversely Isotropic Constituents

  • Igor Sevostianov
  • Federico J. Sabina
  • Julian Bravo-Castillero
  • Raul Guinovart-Diaz
  • Reinaldo Rodriguez-Ramos
Article

Abstract

The paper addresses the problem of the connection between effective elastic and conductive properties of a fiber reinforced material with both phases (the matrix and the fibers) being transversely-isotropic. The exact solution for a square array of fibers and approximate solutions for randomly located parallel fibers are constructed and compared. The results allow one to predict the entire set of macroscopic elastic stiffnesses through one or two measurement of thermal or electrical conductivity. As a side result, it is shown that the mutual positions of inhomogeneities produce only a minor effect and that applicability of the non-interaction approximation is much wider than expected.

Keywords

Fiber-reinforced composites effective moduli cross-property connections asymptotic homogenization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berryman J.G., Milton G.W. (1988) Microgeometry of random composites and porous media. J. Phys. D 21: 87-94CrossRefADSGoogle Scholar
  2. Bravo-Castillero J, Guinovart-Diaz R., Sabina F.J., Rodriguez-Ramos R. (2001) Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely-isotropic constituents - II. Piezoelectric and square symmetry. Mechanics of Materials 33, 237-248CrossRefGoogle Scholar
  3. Bristow J.R. (1960) Microcracks, and the static and dynamic elastic constants of annealed heavily cold-worked metals. British J. Appl. Phys 11: 81-85CrossRefADSGoogle Scholar
  4. Gibiansky L.V., Torquato S. (1995) Rigorous link between the conductivity and elastic moduli of fiber reinforced materials. Phil. Trans. Roy. Soc .L. A353: 243-278ADSGoogle Scholar
  5. Gibiansky L.V., Torquato S. (1996) Connection between the conductivity and bulk modulus of isotropic composite materials. Proc. Roy. Soc. L. A452, 253–283CrossRefADSMathSciNetGoogle Scholar
  6. Kachanov M., Sevostianov I., Shafiro B. (2001) Explicit cross-property correlations for porous materials with anisotropic microstructures. Journal of the Mechanics and Physics of Solids 49, 1–25CrossRefMathSciNetGoogle Scholar
  7. Kanaun, S.K. and Levin, V.M. (1994). The self-consistent field method in mechanics of matrix composite materials. Advances in mathematical modelling of composite materials, (ed. K. Z. Markov), World Scientific Publ., Singapoure,1–58.Google Scholar
  8. Levin V., Michelitsch Th., Sevostianov I.(2000) Spheroidal inhomogeneity in the transversely isotropic piezoelectric medium. Archive for Applied Mechanics 70: 673-693CrossRefGoogle Scholar
  9. Milton, G.W. (1984) Correlation of the electromagnetic and elastic properties of composites and microgeometries corresponding with effective medium theory. In Physics and Chemistry of Porous Media (eds. D.L.Johnson, P.N.Sen), 66-77. 1983, American Institute of Physics.Google Scholar
  10. Rodriguez-Ramos R., Sabina F.J., Guinovart-Diaz R., Bravo-Castillero J (2000) Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely-isotropic constituents - I. Elastic and square symmetry. Mechanics of Materials 33 223–235Google Scholar
  11. Sevostianov I., Kachanov M. (2002) Explicit cross-property correlations for anisotropic two-phase composite materials. Journal of the Mechanics and Physics of Solids 50: 253–282CrossRefMathSciNetGoogle Scholar
  12. Sevostianov I., Levin V., Kachanov M. (2001) On the modeling and design of piezocomposites with prescribed properties. Archive for Applied Mechanics 71: 733–747CrossRefGoogle Scholar
  13. Sevostianov I. (2003) Explicit relations between elastic and conductive properties of a material containing annular cracks. Phil. Trans. Roy. Soc. L. A 361: 987–999CrossRefADSMathSciNetGoogle Scholar
  14. Van Fo Fy G.A. (1971) Theory of reinforced materials. Naukova Dumka. Kiev, (in Russian)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Igor Sevostianov
    • 1
  • Federico J. Sabina
    • 2
  • Julian Bravo-Castillero
    • 3
  • Raul Guinovart-Diaz
    • 3
  • Reinaldo Rodriguez-Ramos
    • 3
  1. 1.Department of Mechanical EngineeringNew Mexico State UniversityLas CrucesUSA
  2. 2.Instituto de Investigaciones en Matematicas Aplicadasy en SistemasUniversidad Nacional Autonoma de MexicoMexicoMexico
  3. 3.Facultad de Matematica y ComputacionUniversidad de la HabanaHabana-4Cuba

Personalised recommendations