Advertisement

International Journal of Fracture

, Volume 137, Issue 1–4, pp 1–7 | Cite as

Preface

  • George J. Dvorak
Article

Keywords

Mechanical Engineer Civil Engineer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bažant, Z.P. 1971A correlation study of incremental deformations and stability of continuous bodiesJournal of Applied Mechanics Transactions of the ASME38919928Google Scholar
  2. Bažant, Z.P. 1972aPrediction of concrete creep effects using age-adjusted effective modulus methodAmerican Concrete Institute Journal69212217Google Scholar
  3. Bažant, Z.P. 1972bThermodynamics of interacting continuua with surfaces and creep analysis of concrete structuresNuclear Engineering and Design20477505Google Scholar
  4. Bažant, Z.P. (1976). Instability, ductility, and size effect in strain-softening concrete. Journal of Engineering Mechanics – ASCE 102, EM2, 331–344.Google Scholar
  5. Bažant, Z.P. 1984Size effect in blunt fracture: concrete, rock, metalJournal of Engineering Mechanics– ASCE110518535Google Scholar
  6. Bažant, Z.P. 2002aScaling of sea ice fracture-Part I: Vertical penetrationJournal of Applied Mechanics– ASME691118Google Scholar
  7. Bažant, Z.P. (2002b). Scaling of Structural Strength. Hermes Penton Science (Kogan Page Science): London; 2nd updated ed., Elsevier 2005 (Errata: www.civil.northwestern.edu/people/Bažant.html).Google Scholar
  8. Bažant, Z.P. 2004Scaling theory for quasibrittle structural failure (inaugural article)Proceedings of the National Academy of Sciences1011400014007Google Scholar
  9. Bažant, Z.P., Beghini, A. 2005Which formulation allows using a constant shear modulus for small strain-buckling of soft-core sandwich structures?Journal of Applied Mechanics ASME72785787Google Scholar
  10. Bažant Z.P. and Cedolin L. (1991). Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories. Oxford University Press: New York; 2nd ed. Dover Publishers: New York (2003).Google Scholar
  11. Bažant, Z.P., Chern, J.-C. 1984Bayesian statistical prediction of concrete creep and shrinkageAmerican Concrete Institute Journal81319330Google Scholar
  12. Bažant, Z.P., Estenssoro, L.F. 1979Surface singularity and crack propagationInternational Journal of Solids and Structures15405426MathSciNetGoogle Scholar
  13. Bažant, Z.P., Jirásek, M. 2002Nonlocal integral formulations of plasticity and damage: survey of progressJournal of Engineering Mechanics – ASCE12811191149Google Scholar
  14. Bažant, Z.P., Kazemi, M.T. 1990Determination of fracture energy, process zone length and brittleness number from size effect, with application to rock and concreteInternational Journal of Fracture44111131Google Scholar
  15. Bažant, Z.P., Lin, F.-B. 1988Nonlocal smeared cracking model for concrete fractureJournal of Structural Engineering – ASCE11424932510Google Scholar
  16. Bažant, Z.P., Najjar, L.J. 1972Nonlinear water diffusion in nonsaturated concreteMaterials and Structures (RILEM, Paris)5320Google Scholar
  17. Bažant, Z.P., Novák, D. 2000Probabilistic nonlocal theory for quasibrittle fracture initiation and size effect. I. TheoryJournal of Engineering Mechanics – ASCE126166174Google Scholar
  18. Bažant, Z.P., Oh, B.H. 1983Crack band theory for fracture of concreteMaterials and Structures (RILEM)16155177Google Scholar
  19. Bažant, Z.P., Oh, B.-H. 1985Microplane model for progressive fracture of concrete and rockJournal of the Engineering Mechanics – ASCE111559582Google Scholar
  20. Bažant, Z.P., Oh, B.-H. 1986Efficient numerical integration on the surface of a sphereZeitschrift für angewandte Mathematik und Mechanik (ZAMM)663749Google Scholar
  21. Bažant, Z.P. and Pang, S.D. (2006), Activation energy based extreme value statistics and size effect in brittle and quasibrittle fracture. Submitted to International Journal of the Mechanics and Physics of Solids.Google Scholar
  22. Bažant, Z.P., Pijaudier-Cabot, G. 1989Measurement of characteristic length of nonlocal continuumJournal of Engineering Mechanics – ASCE115755767Google Scholar
  23. Bažant, Z.P., Planas, J. 1998Fracture and Size Effect in Concrete and Other Quasibrittle MaterialsCRC PressBoca Raton, LondonGoogle Scholar
  24. Bažant, Z.P., Thonguthai, W. 1978Pore pressure and drying of concrete at high temperatureJournal of the Engineering Materials Division – ASME10410581080Google Scholar
  25. Bažant, Z.P., Xi, Y. 1991Statistical size effect in quasi-brittle structures: II nonlocal theoryJournal of Engineering Mechanics – ASCE11726232640Google Scholar
  26. Bažant, Z.P., Yavari, A. 2005Is the cause of size effect on structural strength fractal or energetic-statistical?Engineering Fracture Mechanics72131Google Scholar
  27. Bažant, Z.P., Caner, F.C., Carol, I., Adley, M.D., Akers, S.A. 2000Microplane model M4 for concrete: I. formulation with work-conjugate deviatoric stressJournal of the Engineering Mechanics – ASCE126944953Google Scholar
  28. Bažant, Z.P., Daniel, I.M., Li, Z. 1996Size effect and fracture characteristics of composite laminatesJournal of Engineering Materials and Technology – Transactins of the ASME118317324Google Scholar
  29. Bažant Z.P., Guo Z., Espinosa H., Zhu Y. and Peng B. (2005). Epitaxially influenced boundary layer model for size effect in thin metallic films. Journal of Applied Physics 97, 073506–1–073506–13.Google Scholar
  30. Bažant, Z.P., Hauggaard, A.B., Baweja, S., Ulm, F.-J. 1997Microprestress-solidification theory for concrete creep I aging and drying effectsJournal of Engineering Mechanics – ASCE12311881194Google Scholar
  31. Bažant, Z.P., Kim, J.J.H., Daniel, I.M., Becq-Giraudon, E., Zi, G. 1999Size effect on compression strength of fiber composites failing by kink band propagationInternational Journal of Fracture95103141Google Scholar
  32. Bažant, Z.P., Lin, F.-B., Lippmann, H. 1993Fracture energy release and size effect in borehole breakoutInternational Journal for Numerical and Analytical Methods in Geomechanics17114Google Scholar
  33. Bažant, Z.P. Zhou, Y. and Daniel, I.M. (2006). Size effect on strength of laminate-foam sandwich plates, Journal of Engineering Materials and Technology – Transactinos of the ASME 128, in press.Google Scholar
  34. Bažant, Z.P., Zhou, Y., Novák, D., Daniel, I.M. 2004Size effect on flexural strength of fiber-composite laminateJournal of Engineering Materials and Technology – Transactinos of the ASME1262937Google Scholar
  35. Bažant, Z.P., Zhou, Y., Zi, G., Daniel, I.M. 2003aSize effect and asymptotic matching analysis of fracture of closed-cell polymeric foamInternational Journal of Solids and Structures4071977217Google Scholar
  36. Bažant, Z.P., Zi, G., McClung, D. 2003bSize effect law and fracture mechanics of the triggering of dry snow slab avalanchesJournal of Geophysical Research10821192129Google Scholar
  37. Jirásek, M., Bažant, Z.P. 2002Inelastic Analysis of StructuresJohn Wiley & SonsLondon New YorkGoogle Scholar
  38. Pijaudier-Cabot, G., Bažant, Z.P. 1987Nonlocal damage theoryJournal of Engineering Mechanics – ASCE11315121533Google Scholar
  39. Prat, P.C. and Bažant, Z.P. (1997). Tangential stiffness of elastic materials with systems of growing or closing cracks. Journal of the Mechanics and Physics of Solids 45(4), 611–636 and 45(8), 1419–1420.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Mechanical, Aerospace and Nuclear EngineeringRensselaer Polytechnic InstituteTroyU.S.A.

Personalised recommendations