International Journal of Fracture

, Volume 140, Issue 1–4, pp 3–14

Nanoscale damage during fracture in silica glass

  • D. Bonamy
  • S. Prades
  • C. L. Rountree
  • L. Ponson
  • D. Dalmas
  • E. Bouchaud
  • K. Ravi-Chandar
  • C. Guillot
Article

Abstract

We report here atomic force microscopy experiments designed to uncover the nature of failure mechanisms occuring within the process zone at the tip of a crack propagating into a silica glass specimen under stress corrosion. The crack propagates through the growth and coalescence of nanoscale damage spots. This cavitation process is shown to be the key mechanism responsible for damage spreading within the process zone. The possible origin of the nucleation of cavities, as well as the implications on the selection of both the cavity size at coalescence and the process zone extension are finally discussed.

Keywords

AFM brittle fracture corrosion fatigue damage 

Keywords

D24 L60 047 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barenblatt, G.I. 1962The mathematical theory of equilibrium of cracks in brittle fractureAdvances in Applied Mechanics755129MathSciNetCrossRefGoogle Scholar
  2. Bonamy, D., Ravi-Chandar, K. 2003Interaction of shear waves and propagating cracksPhysical Review Letters912355021–4CrossRefADSGoogle Scholar
  3. Bonamy, D., Ravi-Chandar, K. 2005Dynamic crack response to a localized shear pulse perturbation in brittle amorphous materials: on crack surface rougheningInternational Journal of Fracture134122CrossRefGoogle Scholar
  4. Bouchaud, E. 1997Scaling properties of cracksJournal of Physics (Condensed Matter)94319CrossRefADSGoogle Scholar
  5. Célarié, F., Prades, S., Bonamy, D., Ferrero, L., Bouchaud, E., Guillot, C., Marlière, C. 2003aGlass breaks like metal, but at the nanometer scale, Glass breaks like metal, but at the nanometer scalePhysical Review Letters900755041–4CrossRefADSGoogle Scholar
  6. Célarié, F., Prades, S., Bonamy, D., Dickelé, A., Bouchaud, E., Guillot, C., Marlière, C. 2003bSurface fracture of glassy materials as detected by real-time atomic force microscopy (AFM) experimentsApplied Surface Science2129296CrossRefGoogle Scholar
  7. Dugdale, D.S. 1960Yielding of sheets containing slitsJournal of the Mechanics and Physics of Solids8100CrossRefADSGoogle Scholar
  8. Guilloteau, E., Charrue, H., Creuzet, F. 1996The direct observation of the core region of a propagating fracture crack in glassEurophysics Letters34549553CrossRefADSGoogle Scholar
  9. Guin, J.P., Wiederhorn, S.M. 2004Fracture of Silicate Glasses: Ductile or Brittle?Physical Review Letters922155021–4CrossRefADSGoogle Scholar
  10. He, M.Y., Turner, M.R., Evans, A.G. 1995Analysis of the double cleavage drilled compression specimen for interface fracture energy measurements over range of mode mixitiesActa Metallurgica Materialia4334533458CrossRefGoogle Scholar
  11. Hénaux, S., Creuzet, F. 2000Crack tip morphology of slowly growing cracks in glassJournal of the American Ceramic Society83415417CrossRefGoogle Scholar
  12. Inglis, C.E. 1913Stresses in a plate due to the presence of cracks and sharp cornersTransactions of the Institution of Naval Architects55219230Google Scholar
  13. Irwin, G.R. 1957Analysis of stresses and strains near the end of a crack traversing a plateJournal of Applied Mechanics24361364Google Scholar
  14. Kelly, A., Tyson, W.R., Cottrell, A.H. 1967Ductile and brittle crystalsThe Philosophical Magazine15567586ADSGoogle Scholar
  15. Kobayashi, T., Shockey, D.A. 1987A Fractographic Investigation of Thermal Embrittlement in Cast Duplex Stainless SteelMetallalurgical Transactions A18A19411949ADSGoogle Scholar
  16. Kalia, R., Nakano, A., Vashishta, P., Rountree, C.L., Brutzel, L., Ogata, S. 2003Multiresolution atomistic simulations of dynamic fracture in nanostructured ceramics and glassesInternational Journal of Fracture18A19411949Google Scholar
  17. Kurkjian, C.R., Gupta, P.K., Brow, R.K., Lower, N. 2003The intrinsic strength and fatigue of oxide glassesJournal of Non-Crystalline Solids316114124CrossRefADSGoogle Scholar
  18. Lapique, F., Meakin, P., Feder, J., Jossang, T. 2002Self-affine fractal scaling in fracture in ethylene and propylene polymers surfaces generated and copolymersJournal of Applied Polymer Sciences86973983CrossRefGoogle Scholar
  19. Lawn, B.R. 1993Fracture of Brittle Solids2Cambridge University PressCambridgeGoogle Scholar
  20. Lawn, B.R., Hockey, B.J., Wiederhorn, S.M. 1980Atomically sharp cracks in brittle solids: an electron microscopy studyJournal of Materials Science1512CrossRefGoogle Scholar
  21. Marlière, C., Prades, S., Célarié, F., Dalmas, D., Bonamy, D., Guillot, C., Bouchaud, E. 2003Crack fronts and damage in glass at the nanometre scaleJournal of Physics-Condensed Matter1523772386CrossRefADSGoogle Scholar
  22. Miyamoto, H., Kikuchi, M., Kawazoe, T. 1990A study on the ductile fracture of Al-alloys 7075 and 2017International Journal of Fracture42389404CrossRefGoogle Scholar
  23. Paun, F., Bouchaud, E. 2003Morphology of damage cavities in aluminium alloysInternational Journal of Fracture1214354CrossRefGoogle Scholar
  24. Prades, S., Bonamy, D., Dalmas, D., Bouchaud, E., Guillot, C. 2005aNano-ductile crack propagation in glasses under stress corrosion: spatiotemporal evolution of damage in the vicinity of the crack tipInternational Journal of Solids and Structures42637645CrossRefMATHGoogle Scholar
  25. Proctor, B.A., Whitney, I., Johnson, J.W. 1967The strength of fused silicaProceedings of the Royal SocietyA297534557Google Scholar
  26. Ravi-Chandar, K., Knauss, W.G. 1984An experimental investigation into dynamic fracture-IV On the interaction of stress waves with propagating cracksInternational Journal of Fracture26189200CrossRefGoogle Scholar
  27. Ravi-Chandar, K., Yang, B. 1997On the role of microcracks in the dynamic fracture of brittle materialsJournal of the Mechanics and Physics of Solids45535563CrossRefADSGoogle Scholar
  28. Rountree, C.L., Kalia, R.K., Lidorikis, E., Nakano, A., Van Brutzel, L., Vashishta, P. 2002Atomistic aspects of crack propagation in brittle materials: Multimillion atom molecular dynamics simulationsAnnual Review of Material Research32377400CrossRefGoogle Scholar
  29. Swiler, T.P., Simmons, J.H., Wright, A.C. 1995Molecular dynamics study of brittle fracture in silica glass and cristobaliteJournal of Non-Crystalline Solids1826877CrossRefADSGoogle Scholar
  30. Tomozawa, M., Han, W.H., Lanford, W.A. 1991Water Entry into Silica Glass During Slow Crack GrowthJournal of the American Ceramic Society7425732576CrossRefGoogle Scholar
  31. Van Brutzel, L. (1999). Contribution l’étude des mécanismes de rupture dans les amorphes: étude par dynamique moléculaire de la rupture de verre de silice. PhD Thesis, University of Paris VI.Google Scholar
  32. Brutzel, L., Rountree, C.L., Kalia, R.K., Nakano, A., Vashishta, P. 2002Dynamic fracture mechanisms in nanostructured and amorphous silica glasses: million-atom molecular dynamics simulationsMaterials Research Society Symposium Proceedings703V.3.9.1V.3.9.6Google Scholar
  33. Wiederhorn, S.M. 1967Influence of water vapor on crack propagation in Soda-lime glassJournal of the American Ceramic Society50407414CrossRefGoogle Scholar
  34. Wiederhorn, S.M., Boltz, L.H. 1970Stress corrosion and static fatigue of glassJournal of the American Ceramic Society53543548CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • D. Bonamy
    • 1
  • S. Prades
    • 1
    • 2
  • C. L. Rountree
    • 1
    • 3
  • L. Ponson
    • 1
  • D. Dalmas
    • 1
    • 4
  • E. Bouchaud
    • 1
  • K. Ravi-Chandar
    • 5
  • C. Guillot
    • 1
  1. 1.Fracture Group, Service de Physique et Chimie des Surfaces et InterfacesDSM/DRECAM/SPCSI, CEA SaclayGif sur YvetteFrance
  2. 2.Department of MaterialsSwiss Federal Institute of TechnologyZürichSwitzerland
  3. 3.Collaboratory for Advanced Computing and Simulations, Departments of Material Science and Engineering, Physics and Astronomy, Computer Science and Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  4. 4.Glass Surface and InterfaceUnité Mixte CNRS/Saint-GobainAubervilliers CedexFrance
  5. 5.Center for Mechanics of Solids, Structures and Materials, Department of Aerospace Engineering and Engineering MechanicsUniversity of TexasAustinUSA

Personalised recommendations