International Journal of Fracture

, Volume 140, Issue 1–4, pp 159–168 | Cite as

Dynamic quantized fracture mechanics

Original Article

Abstract

A new quantum action-based theory, dynamic quantized fracture mechanics (DQFM), is presented that modifies continuum-based dynamic fracture mechanics (DFM). The crack propagation is assumed as quantized in both space and time. The static limit case corresponds to quantized fracture mechanics (QFM), that we have recently developed to predict the strength of nanostructures. DQFM predicts the well-known forbidden strength and crack speed bands – observed in atomistic simulations – which are unexplained by continuum-based approaches. In contrast to DFM and linear elastic fracture mechanics (LEFM), that are shown to be limiting cases of DQFM and which can treat only large (with respect to the “fracture quantum”) and sharp cracks under moderate loading speed, DQFM has no restrictions on treating defect size and shape, or loading rate. Simple examples are discussed (i) strengths predicted by DQFM for static loads are compared with experimental and numerical results on carbon nanotubes containing nanoscale defects; (ii) the dynamic fracture initiation toughness predicted by DQFM is compared with experimental results on microsecond range impact failures of 2024-T3 aircraft aluminum alloy. Since LEFM has been successfully applied also at the geophysics size-scale, it is conceivable that DQFM theory can treat objects that span at least 15 orders of magnitude in size.

Keywords

Dynamic fracture Quantized fracture Finite fracture Nanostructures Nanotubes Strength Impacts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belytschko, T 2004The role of vacancy defects and holes in the fracture of carbon nanotubesChem Phys Lett390413420CrossRefGoogle Scholar
  2. Belytschko T, Xiao SP, Ruoff R, (2002) Effects of defects on strength of nanotubes: comparison. Los Alamos National Laboratory, Preprint Archive, Physics pp 1–6Google Scholar
  3. Carpinteri, A, Pugno, N 2005Are the scaling laws on strength of solids related to mechanics or to geometry?Nat Mat4421423CrossRefGoogle Scholar
  4. Freund LB (1990) Dynamic fracture mechanics. Cambridge University PressGoogle Scholar
  5. Gao, H, Ji, B, Jaeger, IL, Arzt, E, Fratzl, P 2003Materials become insensitive to flaws at nanoscale: lesson from natureProce Natl Acad Sci USA10055975600CrossRefADSGoogle Scholar
  6. Griffith, AA 1920The phenomenon of rupture and flow in solidsPhil Trans Roy Soc A221163198ADSGoogle Scholar
  7. Heizler, SI, Kessler, DA 2002Mode-I fracture in a nonlinear lattice with viscoelastic forcesPhys Rev E660161261/10CrossRefADSGoogle Scholar
  8. Hellan K (1985) An Introduction to fracture mechanics. McGraw-Hill Book CompanyGoogle Scholar
  9. Hirai, Y,  et al. 2003Molecular dynamics studies on mechanical properties of carbon nano tubes with pinhole defectsJpn J Appl Phys4241204123CrossRefGoogle Scholar
  10. Holland, D, Marder, M 1999Cracks and atomsAdv Mat11793806CrossRefGoogle Scholar
  11. Irwin, GR 1957Analysis of stresses and strains near the end of a crack traversing a plateTrans ASME J Appl Mech E24361364Google Scholar
  12. Kessler, D, Levine, H 2003Does the continuum theory of dynamic fracture work?Phys Rev E680361181/4CrossRefADSGoogle Scholar
  13. Marder, M 1991New dynamical equations for cracksPhys Rev Lett6624842487MATHMathSciNetCrossRefADSGoogle Scholar
  14. Marder, M, Gross, S 1995Origin of crack tip instabilitiesJ Mech Phys Sol43148MATHMathSciNetCrossRefGoogle Scholar
  15. Marder, M, Liu, X 1993Instability in lattice fracturePhys Rev Lett7124172420CrossRefADSGoogle Scholar
  16. Mielke SL, Troya D, Zhang S, Li J-L, Xiao S, Car R, Ruoff RS, Schatz GC,Google Scholar
  17. Mott, NF 1948Brittle fracture in mild steel platesEngineering1651618Google Scholar
  18. Morozov NF, Petrov Yu V, Utkin AA (1990) Dokl Akad Nauk SSSR 313(2): 276 [Sov Phys Dokl 35:646]Google Scholar
  19. Murakami, H. 1986Stress intensity factors handbook. PublPergamon, OxfordUKGoogle Scholar
  20. Neuber, H 1958Theory of notch stressesSpringerBerlinMATHGoogle Scholar
  21. Novozhilov, V 1969On a necessary and sufficient criterion for brittle strengthPrik Mat Mek33212222Google Scholar
  22. Ogata, S, Shibutani, Y 2003Ideal tensile strength and band gap of single-walled carbon nanotubePhys Rev B681654091/4CrossRefADSGoogle Scholar
  23. Orowan, E 1948Fracture and strength of solidsRep Progress PhysXII185Google Scholar
  24. Owen, DM, Zhuang, SZ, Rosakis, AJ, Ravichandran, G 1998Experimental determination of dynamic crack initiation and propagation fracture toughness in thin aluminum sheetsInt J Fract90153174CrossRefGoogle Scholar
  25. Pechenik, L, Levine, H, Kessler, D 2002Steady-state mode I cracks in a viscoelastic triangular latticeJ Mech Phys Sol50583613MATHCrossRefGoogle Scholar
  26. Petrov Yu, V, Sitnikova, WV 2004Dynamic cracking resistance of structural materials predicted from impact fracture on aircraft alloyTech Phys495760CrossRefGoogle Scholar
  27. Petrov Yu, V 1996Quantum analogy in the mechanics of fracture solidsPhys Solid State3818461850ADSGoogle Scholar
  28. Pugno, N, Ruoff, R 2004Quantized fracture mechanicsPhil Mag8428292845CrossRefGoogle Scholar
  29. Pugno, N 2006On the strength of the nanotube-based space elevator cable: from nanomechanics to megamechanicsJ Phys-Condens Mat18S1971S1990CrossRefADSGoogle Scholar
  30. Slepyan, L 1981Dynamics of brittle fracture in latticeDoklady Soviet Phys26538540MATHGoogle Scholar
  31. Tada H, Paris PC, Irwin GR (1985) The stress intensity factor handbook 2nd edn. Paris Productions IncorporatedGoogle Scholar
  32. Taylor, D, Cornetti, P, Pugno, N 2005The fracture mechanics of finite crack extensionsEng Frac Mech7210211028CrossRefGoogle Scholar
  33. Westergaard, HM 1939Bearing pressures and cracksJ Appl Mech64953Google Scholar
  34. Yu, M-F, Lourie, O, Dyer, MJ, Moloni, K, Kelly, TF, Ruoff, RS 2000Strength and breaking mechanism of multiwalled carbon nanotubes under tensile loadScience287637640CrossRefADSGoogle Scholar
  35. Zhang, S, Mielke, SL, Khare, R, Troya, D, Ruoff, RS, Schatz, GC, Belytschko, T 2004Mechanics of defects in carbon nanotubes: atomistic and multiscale simulationsPhys Rev B711154031 /12CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Department of Structural EngineeringPolitecnico di TorinoTorinoItaly

Personalised recommendations