International Journal of Fracture

, Volume 141, Issue 1–2, pp 313–323 | Cite as

New quantized failure criteria: application to nanotubes and nanowires

  • Nicola Pugno
Original Article

Abstract

In this paper new quantized failure criteria are proposed, also for nanoscale applications. The main theories in the context of the strength of solids, i.e., of brittle fracture, dynamic fracture, fatigue and Weibull Statistics are reconsidered according to the proposed “quantization rules”. The “corresponding principle” is verified and thus the classical theories are found to be the limit cases of the quantized counterparts. As an example, our treatment is applied to very recent experimental results on carbon or WS2 nanotubes and to futurist ultra-nanocrystalline diamond nanowires, for which the tensile, bending and ideal strength are estimated.

Keywords

Quantized fracture mechanics Size-effects Nanoscale strength Nanotubes Nanowires Ultra nano crystalline diamond 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barber AH, Kaplan-Ashiri I, Cohen SR, Tenne R, Wagner HD (2005b) Stochastic strength of nanotubes: an appraisal of available data. Composite Sci Technol in pressGoogle Scholar
  2. Carpinteri, A 1982Notch sensitivity in fracture testing of aggregative materialsEng Frac Mech16467481CrossRefGoogle Scholar
  3. Carpinteri, A, Chiaia, B 1996Crack-resistance behavior as a consequence of self-similar fracture topologiesInt J Frac76327340Google Scholar
  4. Carpinteri, A, Pugno, N 2002One-, two- and three-dimensional universal laws for fragmentation due to impact and explosionJ Appl Mech69854856CrossRefGoogle Scholar
  5. Carpinteri, A, Pugno, N 2004Size effects on average and standard deviation values for the mechanical properties of condensed matter: a energy based unified approachInt J Frac128253261CrossRefGoogle Scholar
  6. Carpinteri, A, Pugno, N 2005aFracture instability and limit strength condition in structures with re-entrant cornersEng Frac Mech7212541267CrossRefGoogle Scholar
  7. Carpinteri, A, Pugno, N 2005bAre the scaling laws on strength of solids related to mechanics or to geometry?Nature Materi4421423CrossRefADSGoogle Scholar
  8. Carpinteri, A, Pugno, N 2005cStrength and toughness of micro- and nano-structured materials: unified influence of composition, grain size and structural dimensionRev Advanced Mater Sci J10320324Google Scholar
  9. Cornetti P, Carpinteri A, Pugno N, Taylor D (2005) Finite fracture mechanics: a coupled stress and energy failure criterion. Eng Frac Mech. In pressGoogle Scholar
  10. Espinosa, HD,  et al. 2003Fracture strength of ultrananocrystalline diamond thin films: identification of Weibull parametersJ Appl Phys9460766084CrossRefADSGoogle Scholar
  11. Freund, LB 1990Dynamic fracture mechanicsCambridge University PressCambridge, MAMATHGoogle Scholar
  12. Gao, H, Ji, B, Jaeger, IL, Arzt, E, Fratzl, P 2003Materials become insensitive to flaws at nanoscale: lesson from NatureProc Nat Acad Sci USA10055975600CrossRefADSGoogle Scholar
  13. Griffith, AA 1921The phenomenon of rupture and flow in solidsPhil Trans Roy Soc.A221163198ADSGoogle Scholar
  14. Gruen, D 1999Nanocrystalline diamond filmsAnnu Rev Mater Sci29211259CrossRefGoogle Scholar
  15. Kashtanov, A, Petrov, Yu 2004Fractal models in fracture mechanicsInt J Frac128271276CrossRefGoogle Scholar
  16. Ke, CH, Pugno, N, Peng, B, Espinosa, HD 2005Experiments and modeling of carbon nanotube NEMS deviceJ Mech Phys Solids5313141333CrossRefGoogle Scholar
  17. Leguillon, D 2002Strength or toughness? A criterion for crack onset at a notchEur J Mech A/Solids216172MATHCrossRefGoogle Scholar
  18. Morozov NF (1984) Mathematical issues of a crack theory. Nauka, Moscow (in Russian)Google Scholar
  19. Morozov, NF, Petrov, YuV, Utkin, AA 1990Dokl Akad Nauk SSSR313276[Sov Phys Dokl 35:646]Google Scholar
  20. Murakami, H 1986Stress intensity factors handbookPergamon pressOxford, UKGoogle Scholar
  21. Neuber, H 1958Theory of notch stressesSpringerBerlinMATHGoogle Scholar
  22. Novozhilov, V 1969On a necessary and sufficient criterion for brittle strengthPrik Mat Mek33212222Google Scholar
  23. Owen, DM, Zhuang, SZ, Rosakis, AJ, Ravichandran, G 1988Experimental determination of dynamic crack initiation and propagation fracture toughness in thin aluminum sheetsInt J Frac90153174CrossRefGoogle Scholar
  24. Peng B, Espinosa HD (2004) Fracture size effect in ultrananocrystalline diamond—Weibull theory applicability. In: Proceedings of the Int. Mech. Eng. Congress 2004, California, 13–19 November 2004Google Scholar
  25. Petrov YuV (1996) Quantum macromechanics of fracture of solids. Preprint of Inst. for Problems of Mechanical Engineering, Russ. Acad. Sci., St.-PetersburgGoogle Scholar
  26. Petrov, YuV, Morozov, NF, Smirnov, VI 2003Structural macromechanics approach in dynamics of fractureFatigue Frac Eng Mater Struct26363372CrossRefGoogle Scholar
  27. Petrov, YV, Sitnikova, EV 2004Dynamic cracking resistance of structural materials predicted from impact fracture of an aircraft alloyTech Phys495760CrossRefGoogle Scholar
  28. Pugno N (2002) A quantized Griffith’s criterion, Day study of the Italian Group of Fracture on Nanomechanics of Fracture (Communication to the President), 25–26 September 2002, Vigevano, Italy (in Italian)Google Scholar
  29. Pugno N (2004a) Arxiv: cond-mat/0411556, 22 novGoogle Scholar
  30. Pugno N (2004b) Dynamics of nanotube based NEMS. XI Int. Congress on Sound and Vibration (N. 283), 5–8 July 2004b, St. Petersburg, RussiaGoogle Scholar
  31. Pugno, N 2004cNon-linear dynamics of nanotube based NEMS.Transworld Research Network, Special on recent research developments in sound and vibrations2197211Google Scholar
  32. Pugno, N 2005The nanoscale strength of Ultra Nano Crystalline DiamondRev Adv Mater Sci J10156160Google Scholar
  33. Pugno, N, Ciavarella, M, Cornetti, P, Carpinteri, A 2005A generalized Paris’s law for fatigue crack growthJ Mech Phys solids5413331349CrossRefADSGoogle Scholar
  34. Pugno, N, Peng, B, Espinosa, HD 2004Predictions of strength in MEMS components with defects—A novel experimental-theoretical approachInt J Solids Struct42647661CrossRefGoogle Scholar
  35. Pugno, N, Ruoff, R 2004Quantized fracture mechanicsPhil Mag8428292845CrossRefGoogle Scholar
  36. Pugno N, Ruoff R (2006) Nanoscale Weibull Statistcs. J Appl Phys 99:024301/1–4Google Scholar
  37. Seweryn, AA 1998Non-local stress and strain energy release rate mixed mode fracture initiation and propagation criteriaEng Frac Mech59737760CrossRefGoogle Scholar
  38. Taylor, D 1999Geometrical effects in fatigue: a unified theoretical modelInt J fatigue21413420CrossRefGoogle Scholar
  39. Taylor, D, Cornetti, P, Pugno, N 2005The fracture mechanics of finite crack extensionsEng Frac Mech7210211028CrossRefGoogle Scholar
  40. Weibull W (1939) A statistical theory of the strength of materials. Ingeniörsvetenskapsakademiens, Handlingar, Nr. 151Google Scholar
  41. Yu, M-F, Lourie, O, Dyer, MJ, Moloni, K, Kelly, TF, Ruoff, RS 2000Strength and breaking mechanism of multiwalled carbon nanotubes under tensile loadScience287637640CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Nicola Pugno
    • 1
  1. 1.Department of Structural EngineeringPolitecnico di TorinoTorinoItaly

Personalised recommendations