International Journal of Fracture

, Volume 139, Issue 3–4, pp 517–526 | Cite as

Interatomic potentials and the simulation of fracture: C15 NbCr2

  • Frohmut Rösch
  • Hans-Rainer Trebin
  • Peter Gumbsch
Original Article

Abstract

The discrete nature of solids and the interatomic interactions strongly influence crack propagation. Lattice trapping results in stable cracks above and below the critical Griffith load. Local atomic arrangements near the crack front define fracture behaviour. The analysis of these processes on an atomic scale helps to understand principle mechanisms and their consequences, which also have to be incorporated in more coarse-grained descriptions to get reliable results. Large-scale molecular dynamics simulations of fracture on the atomic level can supply information not accessible to experiment. But to simulate a specific material reasonable effective interatomic potentials are needed. In this paper, we report on the fitting and validation of potentials specifically generated for the fracture of C15 NbCr2. Results are compared to those derived with potentials for the elements from the literature. The comparison indicates that interactions fitted to elemental metals are not sufficient to determine alloy properties.

Keywords

Fracture Crack propagation Molecular dynamics simulation Embedded atom method Force matching Ab initio Laves phase C15 NbCr2 Complex metallic alloys Lattice trapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, FF 2005J Mech Phys Solids5310711078CrossRefGoogle Scholar
  2. Alberts, HL 1990J Phys Cond Mat297079711CrossRefADSGoogle Scholar
  3. Adams, JB, Foiles, SM 1990Phys Rev B4133163328CrossRefADSGoogle Scholar
  4. Brommer, P, Gähler, F 2006Phil Mag86753758CrossRefGoogle Scholar
  5. Baskes, MI, Nelson, JS, Wright, AF 1989Phys Rev B4060856100CrossRefADSGoogle Scholar
  6. Bangwei, Z, Yifang, O, Shuzhi, L, Zhanpeng, J 1999Physica B262218225CrossRefGoogle Scholar
  7. Chisholm, MF, Kumar, S, Hazzledine, P 2005Science307701703CrossRefADSGoogle Scholar
  8. Chu, F, He, Y, Thoma, DJ, Mitchell, TE 1995Scripta Metall et Mater3312951300CrossRefGoogle Scholar
  9. Chu, F, Mitchell, TE, Chen, SP, Sob, M, Siegl, R, Pope, DP 1995Mat Res Soc Symp Proc36413891394Google Scholar
  10. Chu, F, Thoma, DJ, He, Y, Mitchell, TE, Chen, SP, Perepezki, JH 1995Mat Res Soc Symp Proc36410891094Google Scholar
  11. Dzugutov, M 1992Phys Rev A46R2984R2987CrossRefADSGoogle Scholar
  12. Daw, MS, Baskes, MI 1983Phys Rev Lett5012851288CrossRefADSGoogle Scholar
  13. Ercolessi, F, Adams, JB 1994Europhys Lett26583588Google Scholar
  14. Fawcett, E 1988Rev Mod Phys60209283MathSciNetCrossRefADSGoogle Scholar
  15. Friauf, JB 1927Phys Rev293440CrossRefADSGoogle Scholar
  16. Friauf, JB 1927J Am Chem Soc4931073114CrossRefGoogle Scholar
  17. Foiles, SM, Adams, JB 1989Phys Rev B4059095915CrossRefADSGoogle Scholar
  18. Griffith, AA 1921Philos Trans R Soc Lond Ser A221163198ADSGoogle Scholar
  19. Hazzledine, PM, Pirouz, P 1993Scripta Metall et Mater2812771282CrossRefGoogle Scholar
  20. Henley, CL, Elser, V 1986Phil Mag B53L59L66Google Scholar
  21. Hong, S, Fu, CL 1999Intermetallics759MATHCrossRefGoogle Scholar
  22. IMD, the ITAP Molecular Dynamics Program: http://www.itap.physik.uni-stuttgart.de/ imdGoogle Scholar
  23. Jin, ZH, Gumbsch, P, Lu, K, Ma, E 2001Phys Rev Lett87055703CrossRefADSGoogle Scholar
  24. Keitz, AV, Sauthoff, G 2002Intermetallics10497510CrossRefGoogle Scholar
  25. Kresse, G, Furthmüller, J 1996Comp Mat Sci61550CrossRefGoogle Scholar
  26. Kresse, G, Joubert, D 1999Phys Rev B5917581775CrossRefADSGoogle Scholar
  27. Livingston, JD 1992Phys Stat Sol A131415423Google Scholar
  28. Laves, F, Witte, H 1935Metallwirtsch14645649Google Scholar
  29. Laves, F, Witte, H 1936Metallwirtsch15840842Google Scholar
  30. Liu, CT, Zhu, JH, Brady, MP, McKamey, CG, Pike, LM 2000Intermetallics811191129CrossRefGoogle Scholar
  31. Mayer, B, Anton, H, Bott, E, Methfessel, M, Sticht, J, Harris, J, Schmidt, PC 2003Intermetallics112332CrossRefGoogle Scholar
  32. Morris, JR, Wang, CZ, Ho, KM, Chan, CT 1994Phys Rev B4931093115CrossRefADSGoogle Scholar
  33. Ohta, T, Nakagawa, Y, Kaneno, Y, Inoue, H, Takasugi, T, Kim, W-Y 2003J Mater Sci38657665CrossRefGoogle Scholar
  34. Ormeci, A, Chu, F, Wills, JM, Mitchell, TE, Albers, RC, Thoma, DJ, Chen, SP 1996Phys Rev B541275312762CrossRefADSGoogle Scholar
  35. Roth, J 1997Phys Rev Lett794042CrossRefADSGoogle Scholar
  36. Rösch F, Rudhart CH, Gumbsch P, Trebin H-R (2004) Mat Res Soc Symp Proc 805:LL9.3Google Scholar
  37. Rösch, F, Rudhart, CH, Roth, J, Trebin, H.-R., Gumbsch, P 2005Phys Rev B72014128CrossRefADSGoogle Scholar
  38. Rösch, F, Trebin, H-R, Gumbsch, P 2006Phil Mag8610151020Google Scholar
  39. Stadler, J, Mikulla, R, Trebin, H-R 1997Int J Mod Phys C811311140CrossRefADSGoogle Scholar
  40. Thoma, DJ, Perepezko, JH 1992Mater Sci Eng A15697108CrossRefGoogle Scholar
  41. Thomson, R, Hsieh, C, Rana, V 1971J Appl Phys4231543160CrossRefADSGoogle Scholar
  42. VASP—the Vienna ab initio Simulation Package: http://cms.mpi.univie.ac.at/vasp/Google Scholar
  43. Yang, QB, Kuo, KH 1987Acta Cryst A43787795CrossRefGoogle Scholar
  44. Yifang, O, Bangwei, Z, Shuzhi, L, Zhanpeng, J 1996Z Phys B101161168CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Frohmut Rösch
    • 1
  • Hans-Rainer Trebin
    • 1
  • Peter Gumbsch
    • 2
    • 3
  1. 1.Institut für Theoretische und Angewandte PhysikUniversität StuttgartStuttgartGermany
  2. 2.Institut für Zuverlässigkeit von Bauteilen und SystemenUniversität KarlsruheKarlsruheGermany
  3. 3.Fraunhofer Institut für WerkstoffmechanikFreiburgGermany

Personalised recommendations