International Journal of Fracture

, Volume 140, Issue 1–4, pp 125–140

Energy considerations in crack deflection phenomenon in single crystal silicon

Article

Abstract

Crack deflection in single-crystal brittle occurs when a crack, propagating on one cleavage plane, ‘chooses’, from energy considerations, to continue propagating on another cleavage plane. This phenomenon was identified during dynamic crack propagation experiments of thin, rectangular [0 0 1] single-crystal (SC) silicon specimens subjected to three-point bending (3PB). Specimens with long pre-cracks (hence propagating at a ‘low’ energy and velocity) cleave along the vertical (1 1 0) plane, while the same specimens but with short pre-cracks (and therefore with higher propagation energy and velocity) cleave along the inclined (1 1 1) plane. The same specimens with intermediate pre-crack length show that the crack first propagates on the (1 1 0) plane and then deflects to the (1 1 1) plane. We show that the deflection is due to variations of the material property that resists cracking, Γ, the dynamic cleavage energy, with velocity and crystallographic orientation. We propose selection criteria to explain the deflection: The crack will deflect to the plane with the lowest dynamic cleavage energy. We further suggest that crack deflection is the basic mechanism controlling the way the crack consumes energy while propagating and is the main cause of surface perturbations. The spatial temporal fracture energy along the (1 1 0) cleavage plane is evaluated.

Keywords

Dynamic fracture Single-crystal Cleavage Crack deflection Energy dissipation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Be’ery, I, Lev, U, Sherman, D 2003On the lower limiting velocity of a dynamic crack in brittle solidsJ Appl Phys9324292434CrossRefADSGoogle Scholar
  2. Cramer, T, Wanner, A, Gumbsch, P 2000Energy dissipation and path instabilities in dynamic fracture of silicon single crystalsPhys Rev Lett85788CrossRefADSGoogle Scholar
  3. Fawaz, SA 1999Stress intensity factor solution for part-elliptical through cracksEng Fracture Mech63209226CrossRefGoogle Scholar
  4. Freund, LB 1990Dynamic fracture mechanicsCambridge University PressCambridgeMATHGoogle Scholar
  5. Griffith, AA 1920The phenomena of rupture and flow in solids. The phenomena of rupture and flow in solidsMech Eng A221163198Google Scholar
  6. Hauch, JA, Holland, D, Marder, M, Swinney, H 1999Dynamic fracture in single crystal siliconPhys Rev Lett8238233826CrossRefADSGoogle Scholar
  7. Irwin, GR 1958

    Fracture

    Flugge, S. eds. Handbuch der PhysikSpringerGermany551
    Google Scholar
  8. Kiciak, A, Glinka, G, Ema, M 1990Eng Fract Mech.60221238CrossRefGoogle Scholar
  9. Lawn, B 1993Fracture of brittle solidsCambridge University PressCambridge, UKGoogle Scholar
  10. Lin, XB, Smith, RA 1999Finite element analysis of fatigue crack growth of surface cracked plate, Part II: crack shape changesEng Fract Mech63523540CrossRefGoogle Scholar
  11. Marder, M, Gross, S 1995Origin of crack tip instabilityJ Mech Phys Solids43148MATHMathSciNetCrossRefGoogle Scholar
  12. Muhlstein, CL, Brown, SB, Ritchie, RO 2001High-cycle fatigue of single-crystal silicon thin filmsJ Microelectromech Syst10593600CrossRefGoogle Scholar
  13. Newman, JC,Jr., Raju, IS 1981An empirical stress intensity factor equation for the surface cracksEng Fract Mech15185192CrossRefGoogle Scholar
  14. Pérez, R, Gumbsch, P 2000aDirectional anisotropy in the cleavage fracture of siliconPhys Rev Lett845347CrossRefADSGoogle Scholar
  15. Pérez, R, Gumbsch, P 2000bAn Ab Initio study of the cleavage anisotropy in siliconActa Mater484517CrossRefGoogle Scholar
  16. Raju, IS, Newman, JC,Jr. 1979Stress intensity factors for a wide range of semi-elliptical surface cracks in finite thickness plateEng Fract Mech11817829CrossRefGoogle Scholar
  17. Sharon, E, Cohen, G, Fineberg, J 2001Propagating solitary waves along a rapidly moving crack front.nature4106871CrossRefADSGoogle Scholar
  18. sherman, D, Be’ery, I 1998aNonlinear dynamic rupture in sapphirePhys Rev Lett80540CrossRefADSGoogle Scholar
  19. Sherman, D, Be’ery, I 1998bNonlinear analysis of the fracture surface of a single-crystal brittle solid.physica D119424CrossRefADSGoogle Scholar
  20. Sherman, D, Be’ery, , I,  2000Fracture mechanisms of sapphire under bendingJ Mater Sci351283CrossRefGoogle Scholar
  21. Sherman, D, Be’ery, I 2003aThe shape and the energies of a dynamically propagating crack under bendingJ Mater Res1823792386Google Scholar
  22. Sherman, D, Be’ery, I 2003bVelocity dependent crack deflection in siliconScripta Mater49551555CrossRefGoogle Scholar
  23. Sherman, D, Be’ery, I 2004aNon linear dynamical analysis of crack surface perturbations and their dependence on velocity and direction.physical D90177189CrossRefADSGoogle Scholar
  24. Sherman, D, Be’ery, I 2004b‘From crack deflection to lattice vibrations – macro to atomistic examination of dynamic cleavage fracture’J Mech Phys Solids5217431761CrossRefGoogle Scholar
  25. Sinclair, JE, Lawn, BR 1972Atomistic study of cracks in diamond-structure crystalsP Roy Soc A32983ADSGoogle Scholar
  26. Spence, JCH, Huang, YM, Sankey, O 1993Lattice trapping and surface reconstruction for silicon cleavage on (111). Ab-Initio quantum molecular dynamics calculationActa metall Mater4128152824CrossRefGoogle Scholar
  27. Stalder, B, Beguelin, P, Kausch, HH 1983A simple velocity gauge for measuring crack growthInt J Frac224750CrossRefGoogle Scholar
  28. Thomson, R, Hsieh, C, Rana, V 1971Lattice trapping of fracture cracksJ Appl Phys423154CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Department of Materials EngineeringTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations