International Journal of Fracture

, Volume 133, Issue 2, pp 107–137 | Cite as

Cohesive models for damage evolution in laminated composites

  • Qingda Yang
  • Brian Cox


A trend in the last decade towards models in which nonlinear crack tip processes are represented explicitly, rather than being assigned to a point process at the crack tip (as in linear elastic fracture mechanics), is reviewed by a survey of the literature. A good compromise between computational efficiency and physical reality seems to be the cohesive zone formulation, which collapses the effect of the nonlinear crack process zone onto a surface of displacement discontinuity (generalized crack). Damage mechanisms that can be represented by cohesive models include delamination of plies, large splitting (shear) cracks within plies, multiple matrix cracking within plies, fiber rupture or microbuckling (kink band formation), friction acting between delaminated plies, process zones at crack tips representing crazing or other nonlinearity, and large scale bridging by through-thickness reinforcement or oblique crack-bridging fibers. The power of the technique is illustrated here for delamination and splitting cracks in laminates. A cohesive element is presented for simulating three-dimensional, mode-dependent process zones. An essential feature of the formulation is that the delamination crack shape can follow its natural evolution, according to the evolving mode conditions calculated within the simulation. But in numerical work, care must be taken that element sizes are defined consistently with the characteristic lengths of cohesive zones that are implied by the chosen cohesive laws. Qualitatively successful applications are reported to some practical problems in composite engineering, which cannot be adequately analyzed by conventional tools such as linear elastic fracture mechanics and the virtual crack closure technique. The simulations successfully reproduce experimentally measured crack shapes that have been reported in the literature over a decade ago, but have not been reproduced by prior models.


Bridged crack Cohesive model Composite Delamination Fracture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, M., Massabò, R., and Cox, B.N. (2005). Crack stability during quasi-static multiple delamination, International Journal of Solids and Stuctures, in press.Google Scholar
  2. Bao, G., Suo, Z. 1992Remarks on crack-bridging conceptsApplied Mechanics Review24355366Google Scholar
  3. Barenblatt, G.I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. In: Advances in Applied Mechanics (edited by H.L. Dryden and T. Von Karman) Academic Press, pp. 55–129.Google Scholar
  4. Borg, R., Nilsson, L., Simonsson, K. 2004aSimulation of low velocity impact on fiber laminates using a cohesive zone based delamination modelComposites Science and Technology64279288Google Scholar
  5. Borg, R., Nilsson, L., Simonsson, K. 2004bSimulating DCB, ENF, and MMB experiments using shell elements and a cohesive zone modelComposites Science and Technology64269278Google Scholar
  6. Budiansky, B., Hutchinson, J.W., Evans, A.G. 1986Matrix fracture in fiber reinforced ceramicsJournal of the Mechanics and Physics of Solids34167189Google Scholar
  7. Camanho, P.P., Davila, C.G., Pinha, S.T. 2004Fracture analysis of composite co-cured structural joints using decohesion elementsFatigue and Fracture of Engineering Materials and Structures27745757Google Scholar
  8. Carpinteri, A., Massabò, R. 1996Bridged versus cohesive crack in the flexural behavior of brittle matrix compositesInternational Journal of Fracture81125145Google Scholar
  9. Cartié, D.R., Cox, B.N., Fleck, N.A. 2004Mechanisms of crack bridging by composite and metallic rodsComposites A3513251336Google Scholar
  10. Chang, K.Y., Liu, S., Chang, F.K. 1991Damage tolerance of laminated composites containing an open hole and subjected to tensile loadingsJournal of Composite Materials25274301Google Scholar
  11. Corigliano, A. 1993Formulation, identification and use of interface models in the numerical analysis of composite delaminationInternational Journal of Solids and Structures3027792811Google Scholar
  12. Cottrell, A.H. 1963Mechanics of fracture: Tewksbury Symposium on FractureUniversity of MelbourneMelbourne AustraliaGoogle Scholar
  13. Cox, B.N., Marshall, D.B. 1991Stable and unstable solutions for bridged cracks in various specimensActa Metallurgica et Materialia39579589Google Scholar
  14. Cox, B.N., Dadkhah, M.S., Morris, W.L., Flintoff, J.G. 1994Failure mechanisms of 3D woven composites in tension, compression, and bendingActa Metallurgica et Materialia4239673984Google Scholar
  15. Cox, B.N., Marshall, D.B. 1994Concepts for bridged cracks in fracture and fatigueActa Metallurgica et Materialia42341363Google Scholar
  16. Cox, B.N., Massabò, R., Rugg, K.L. 2001The science and engineering of delamination suppressionChameleon Press Ltd. LondonManchester, England6th International Conference on Deformation and Fracture of Composites, April, 2001Google Scholar
  17. Cox, B.N. 2005Snubbing effects in the pullout of a fibrous rod from a laminateMechanics of Advanced Materials and Structures128598Google Scholar
  18. Dadkhah, M.S., Flintoff, J.G., Kniveton, T., Cox, B.N. 1995Simple models for triaxially braided compositesComposites2691102Google Scholar
  19. Dattaguru, B., Venkatesha, K.S., Ramamurthy, T.S., Vijayakumar, K.K. 1994Finite element estimates of strain energy release rate components at the tip of an interface crack under mode-I loadingEngineering Fracture Mechanics49451463Google Scholar
  20. Davidson, B.D., Gharibian, S.J., Yu, L. 2000Evaluation of energy release rate-based approaches for predicting delamination growth in laminated compositesInternational Journal of Fracture105343365Google Scholar
  21. Borst, R. 2002Fracture in quasi-brittle materials – a review of continuum damage-based approachEngineering Fracture Mechanics6995112Google Scholar
  22. Borst, R. 2003Numerical aspects cohesive-zone modelsEngineering Fracture Mechanics7017431757Google Scholar
  23. Borst, R., Remmers, J.J.C., Needleman, A. 2004Computational aspects of cohesive-zone modelsEuropean Structural Integrity SocietyStockholm, Sweden15th European Conference on FractureGoogle Scholar
  24. Donaldson, S.L. 1988Mode-III interlaminar fracture characterization of composite materialsComposite Science and Technology32225249Google Scholar
  25. Dugdale, D.S. 1960Yielding in steel sheets containing slitsJournal of the Mechanics and Physics of Solids8100104Google Scholar
  26. Elices, M., Guinea, G.V., Gomez, J., Planas, J. 2002The cohesive zone model: Advantages, limitations and challengesEngineering Fracture Mechanics69137163Google Scholar
  27. Falk, M.L., Needleman, A., Rice, J.R. 2001A critical evaluation of cohesive zone models of dynamic fractureJournal de Physique IV114350Google Scholar
  28. Fleck, N.A. 1991Brittle fracture due to an array of microcracksProceedings of the Royal Society of London A4325576Google Scholar
  29. Garg, A.C. 1988Delamination – A damage mode in composite structuresEngineering Fracture Mechanics29557584Google Scholar
  30. Hillerborg, A., Modeer, M., Petersson, P.E. 1976Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elementsCement and Concrete Research6773782Google Scholar
  31. Hutchinson, J.W., Suo, Z. 1992Mixed mode cracking in layered materialsAdvances in Applied Mechanics2963191Google Scholar
  32. Kanninen, M.F. 1974A dynamic analysis of unstable crack propagation and arrest in the DCB test specimenInternational Journal of Fracture10415430Google Scholar
  33. Kortschot, M.T., Beaumont, P.W.R. 1990Damage mechanics of composite materials: I-measurements of damage and strengthComposites Science and Technology39289301Google Scholar
  34. Krueger, R., Cvitkovich, M.K., O’Brien, T.K., Minguet, P.J. 2000Testing and analysis of composite skin/stringer debonding under multiaxial loadingJournal of Composite Materials3412631300Google Scholar
  35. Massabò, R., Mumm, D.R., Cox, B.N. 1998Characterizing mode II delamination cracks in stitched compositesInternational Journal of Fracture92138Google Scholar
  36. Massabò, R., Cox, B.N. 1999Concepts for bridged mode II delamination cracksJournal of the Mechanics and Physics of Solids4712651300Google Scholar
  37. Massabò, R., Cox, B.N. 2001Unusual characteristics of mixed mode delamination fracture in the presence of large scale bridgingMechanics of Composite Materials and Structures86180Google Scholar
  38. Moës, N., Dolbow, J., Belytschko, T. 1999A finite element method for crack growth without remeshingInternational Journal for Numerical Methods in Engineering46131150Google Scholar
  39. Moës, N., Belytschko, T. 2002Extended finite element method for cohesive crack growthEngineering Fracture Mechanics69813833Google Scholar
  40. Mohammed, I., Lechti, M. 2000Cohesive zone modeling of crack nucleation at bimaterial cornersJournal of the Mechanics and Physics of Solids48735764Google Scholar
  41. Needleman, A. 1987A continuum model for void nucleation by inclusion debondingJournal of Applied Mechanics54525531Google Scholar
  42. Needleman, A. 1999An analysis of intersonic crack growth under shear loadingJournal of Applied Mechanics66847857Google Scholar
  43. Needleman, A., Rosakis, A.J. 1999The effect of bond strength and loading rate on the conditions of governing the attainment of intersonic crack growth along interfacesJournal of the Mechanics and Physics of Solids4724112445Google Scholar
  44. Pagano, N.J., Schoeppner, G.A. 2000Delamination of polymer matrix composites: problems and assessmentKelly, A.Z.C. eds. Comprehensive Composite MaterialsElsevier ScienceOxford433528Google Scholar
  45. Pipes, R.B., Wetherhold, R.C., Gillespie, J.W. 1979Notched strength of composite materialsJournal of Composite Materials1211511155Google Scholar
  46. Raju, I.S., Crews, J.H., Aminpour, M.A. 1988Convergence of strain-energy release rate components for edge delaminated composite laminatesEngineering Fracture Mechanics30383396Google Scholar
  47. Raju, I.S., Shivakumar, K.N. 1988Three-dimensional elastic analysis of a composite double cantilever beam specimenAIAA Journal2614931498Google Scholar
  48. Remmers, J.J.C., Borst, R., Needleman, A. 2003A cohesive segments method for the simulation of crack growthComputational Mechanics316977Google Scholar
  49. Remmers, J.J.C., Wells, G.N., Borst, R. 2003A solid like shell element allowing for arbitrary delaminationInternational Journal of Numerical Methods in Engineering5820132040Google Scholar
  50. Rice, J.R. (1980). The mechanics of earthquake rupture. International School of Physics “E. Fermi”, Course 78, 1979: Italian Physical Society/North Holland Publ. Co.Google Scholar
  51. Roberts S.J. (2000). Modelling of microcracking in composite materials (Ph. D.), The University of Newcastle upon Tyne.Google Scholar
  52. Rose, L.R.F. 1987Crack reinforcement by distributed springsJournal of the Mechanics and Physics of Solids34383405Google Scholar
  53. Rugg, K.L., Cox, B.N., Massabò, R. 2002Mixed mode delamination of polymer composite laminates reinforced through the thickness by Z-fibersComposites33177190Google Scholar
  54. Rybicki, E.F., Kanninen, M.F. 1977A finite element calculation of stress intensity factors by a modified crack closure integralEngineering Fracture Mechanics9931938Google Scholar
  55. Schellekens, J.C.J., Borst, R. 1996On the numerical modeling of edge delamination in compositesKey Engineering Materials121-12213160Google Scholar
  56. Shahwan, K.W., Waas, A.M. 1997Non-self-similar decohesion along a finite interface of unilaterally constrained delaminationsProceedings of the Royal Society of LondonA453515550Google Scholar
  57. Shivakumar, K.N., Tan, P.W. and Newman, J.C. Jr. 1988. A virtual crack-closure technique for calculating stress intensity factors for cracked three dimensional bodies. International Journal of Fracture R43–R50.Google Scholar
  58. Shokrieh, M.M., Lessard, L.B. 2000Progressive fatigue damage modeling of composite materials, Part I: modelingJournal of Composite Materials3410561080Google Scholar
  59. Soutis, C., Fleck, N.A., Smith, P.A. 1991Failure prediction technique for compression loaded carbon fibre-epoxy laminates with an open holeJournal of Composite Materials2514761498Google Scholar
  60. Soutis, C. 1994Damage tolerance of open-hole CFRP laminates loaded in compressionComposites Engineering4317327Google Scholar
  61. Soutis, C., Smith, F.C., Matthews, F.L. 2000Predicting the compressive engineering performance of carbon fibre-reinforced plasticsComposites: Part A31531536Google Scholar
  62. Spearing, S.M., Beaumont, P.W.R. 1992Fatigue damage mechanics of composite materials. I: experimental measurement of damage and post-fatigue propertiesComposites Science and Technology44159168Google Scholar
  63. Spearing, S.M., Beaumont, P.W.R., Ashby, M.F. 1992Fatigue damage mechanics of composite materials. II: A damage growth modelComposites Science and Technology1992169177Google Scholar
  64. Strouboulis, T., Copps, K., Babuška, I. 2001The generalized finite element methodComputational Mechanics Advances19048014193Google Scholar
  65. Suo, Z., Bao, G., Fan, B. 1992Delamination R-curve phenomena due to damageJournal of the Mechanics and Physics of Solids40116Google Scholar
  66. Tada, H. 1985The Stress Analysis of Cracks HandbookParis Productions, St LouisMissouriGoogle Scholar
  67. Tay, T.-E., Shen, F. 2002Analysis of growth in laminated composites with consideration for residual thermal stress effectsJournal of Composite Materials3612991320Google Scholar
  68. Tay, T.-E. 2003Characterization and analysis of delamination fracture in composites: An overview of developments from 1990 to 2001Applied Mechanics Review56131Google Scholar
  69. Thouless, M.D., Yang, Q.D. 2001Measurement and analysis of the fracture properties of adhesive jointsDillard, D.A.Pocious, A.V.Chaudhury, M. eds. The Mechanics of AdhesionElsevier ScienceAmsterdam235271Google Scholar
  70. Tvergaard, V., Hutchinson, J.W. 1993The influence of plasticity on the mixed-mode interface toughnessJournal of the Mechanics and Physics of Solids4111191135Google Scholar
  71. Tvergaard, V., Hutchinson, J.W. 1994Toughness of an interface along a thin ductile layer joining elastic solidsPhilosophical Magazine70641656Google Scholar
  72. Tvergaard, V., Hutchinson, J.W. 1996On the toughness of ductile adhesive jointsJournal of the Mechanics and Physics of Solids44789800Google Scholar
  73. Wang, J.S., Suo, Z. 1990Experimental determination of interfacial toughness using Brazil-nut-sandwichActa Metallurgica3812791290Google Scholar
  74. Wei, Y., Hutchinson, J.W. 1997Interface strength, work of adhesion and plasticity in the peel testInternational Journal of Fracture93315333Google Scholar
  75. Wells, G.N., Borst, R., Sluys, L.J. 2002A consistent geometrically non-linear approach for delaminationInternational Journal for Numerical Methods in Engineering5413331355Google Scholar
  76. Whitney, J.M., Nuismer, R.J. 1974Stress fracture criteria for laminated composites containing stress concentrationsJournal of Composite Materials8253265Google Scholar
  77. Wisnom, M.R., Chang, F.-K. 2000Modelling of splitting and delamination in notched cross-ply laminatesComposites Science and Technology6028492856Google Scholar
  78. Xia, Z.C., Hutchinson, J.W. 1994Mode II fracture toughness of a brittle adhesive layerInternational Journal of Solids and Structures3111331148Google Scholar
  79. Xu, X.-P., Needleman, A. 1994Numerical simulations of fast crack growth in brittle solidsJournal of the Mechanics and Physics of Solids4213971434Google Scholar
  80. Yang, B. 2002Examination of free edge crack nucleation around an open hole in composite laminatesInternational Journal of Fracture115173191Google Scholar
  81. Yang, Q.D., Thouless, M.D. 2001Mixed mode fracture of plastically-deforming adhesive jointsInternational Journal of Fracture110175187Google Scholar
  82. Zheng, G., Rice, J.R. 1998Conditions under which velocity-weakening friction allows a self-healing versus cracklike mode of ruptureBulletin of the Seismological Society of America8814661483Google Scholar
  83. Zi, G., Belytschko, T. 2003New crack-tip elements for XFEM and applications to cohesive cracksInternational Journal for Numerical Methods in Engineering5722212240Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Qingda Yang
    • 1
  • Brian Cox
    • 1
  1. 1.Rockwell Scientific Co., LLCThousand OaksUSA

Personalised recommendations