Advertisement

International Journal of Fracture

, Volume 137, Issue 1–4, pp 211–229 | Cite as

On the Fracture Models Determined by the Continuum-strong Discontinuity Approach

  • A. E. HuespeEmail author
  • J. Oliver
  • M. D. G. Pulido
  • S. Blanco
  • D. Linero
Article

Abstract

The paper focuses on the Continuum Strong Discontinuity Approach (CSDA) to fracture mechanics, and the traction-separation cohesive laws induced from continuum dissipative models as their projections onto the failure interface. They are compared with the cohesive laws commonly used for the fracture simulation in quasi-brittle materials, typically concrete. Emphasis is placed in the analysis of the mechanical stress-strain states induced by the CSDA into the fracture process zone: first when the damage mechanism is initiated and, after, when the cohesive model determines the crack response. The influence of the material parameters, particularly the fracture energy and the initial continuum softening modulus, in the obtained phenomenological responses is also analyzed. Representative numerical solutions of fracture problems are finally presented.

Keywords

Continuum strong discontinuity approach cohesive models computational fracture mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfano, G., Crisfield, M.A. 2001Finite element interface models for the delamination analysis of laminated composites: Mechanical and computational issuesInternational Journal for Numerical Methods in Engineering5017011736Google Scholar
  2. Bažant, Z.P. (1983). Crack band theory for fracture of concrete presented at Materiaux et Constructions.Google Scholar
  3. Bažant, Z.P. 1996Analysis of work-of-fracture method for measuring fracture energy of concreteJournal of Engineering Mechanics-Asce122138144Google Scholar
  4. Bažant, Z.P. 2002Concrete fracture models: testing and practiceEngineering Fracture Mechanics69165205Google Scholar
  5. Bažant, Z.P., Li, Y.N. 1997Cohesive crack with rate-dependent opening and viscoelasticity: I mathematical model and scalingInternational Journal of Fracture86247265Google Scholar
  6. Bažant, Z.P. and Planas, J. (1988). Fracture and size effect in concrete and other quasibrittle materials: CRC Press.Google Scholar
  7. Elices, M., Guinea, G.V., Gomez, J., Planas, J. 2002The cohesive zone model: advantages, limitations and challengesEngineering Fracture Mechanics69137163Google Scholar
  8. Hillerborg, A. (1985). Numerical methods to simulate softening and fracture of concrete. in Fracture Mechanics of Concrete: Structural Application and Numerical Calculation:G. C. S. a. A. D. Tomaso, Ed., pp. 141–170.Google Scholar
  9. Mosler, J., Meschke, G. 20033D modelling of strong discontinuities in elastoplastic solids: fixed and rotating localization formulationsInternational Journal for Numerical Methods in Engineering5715531576CrossRefGoogle Scholar
  10. Oliver, J. 1996aModelling strong discontinuities in solid mechanics via strain softening constitutive equations 1 FundamentalsInternational Journal for Numerical Methods in Engineering3935753600Google Scholar
  11. Oliver, J. 1996bModelling strong discontinuities in solid mechanics via strain softening constitutive equations 2 Numerical simulationInternational Journal for Numerical Methods in Engineering3936013623Google Scholar
  12. Oliver, J. 2000On the discrete constitutive models induced by strong discontinuity kinematics and continuum constitutive equationsInternational Journal of Solids and Structures3772077229CrossRefzbMATHMathSciNetGoogle Scholar
  13. Oliver, J., Cervera, M., Manzoli, O. 1999Strong discontinuities and continuum plasticity models: the strong discontinuity approachInternational Journal of Plasticity15319351CrossRefGoogle Scholar
  14. Oliver, J., Huespe, A.E. 2004Continuum approach to material failure in strong discontinuity settingsComputer Methods in Applied Mechanics and Engineering19331953220MathSciNetGoogle Scholar
  15. Oliver, J., Huespe, A.E. 2004Theoretical and computational issues in modelling material failure in strong discontinuity scenariosComputer Methods in Applied Mechanics and Engineering19329873014MathSciNetGoogle Scholar
  16. Oliver, J., Huespe, A.E., Pulido, M.D.G., Chaves, E. 2002From continuum mechanics to fracture mechanics: the strong discontinuity approachEngineering Fracture Mechanics69113136CrossRefGoogle Scholar
  17. Oliver, J., Huespe, A.E., Pulido, M.D.G., Samaniego, E. 2003On the strong discontinuity approach in finite deformation settingsInternational Journal for Numerical Methods in Engineering5610511082MathSciNetGoogle Scholar
  18. Oliver, J., Huespe, A.E., Samaniego, E., Chaves, E.W.V. 2004Continuum approach to the numerical simulation of material failure in concreteInternational Journal for Numerical and Analytical Methods in Geomechanics28609632CrossRefGoogle Scholar
  19. Ortiz, M., Pandolfi, A. 1999Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysisInternational Journal for Numerical Methods in Engineering4412671282CrossRefGoogle Scholar
  20. Papoulia, K.D., Sam, C.H., Vavasis, S.A. 2003Time continuity in cohesive finite element modelingInternational Journal for Numerical Methods in Engineering58679701CrossRefGoogle Scholar
  21. Planas, J., Cendon, D., Sancho, J.M., Reyes, E. and Gálvez, J. (2004). Análisis de la respuesta de elementos finitos de intercara en la simulación numérica de fisuras cohesivas. presented at Métodos Computacionais em Engenharia, Lisboa, May 31-June 2, Portugal.Google Scholar
  22. Planas, J., Elices, M., Guinea, G.V., Gomez, F.J., Cendon, D.A., Arbilla, I. 2003Generalizations and specializations of cohesive crack modelsEngineering Fracture Mechanics7017591776CrossRefGoogle Scholar
  23. Rots, J.G. (1988). Computational Modeling of Concrete Fractures: Delft University of Technology.Google Scholar
  24. Simone, A. 2004Partition of unity-based discontinuous elements for interface phenomena: computational issuesCommunications in Numerical Methods in Engineering20465478zbMATHGoogle Scholar
  25. Simo, J., Oliver, J., Armero, F. 1993An analysis of strong discontinuities induced by strain- softening in rate-independent inelastic solidsComputational Mechanics12277296CrossRefMathSciNetGoogle Scholar
  26. Willam, K. and Sobh, N. (1987). Bifurcation analysis of tangential material operators. in Transient/Dynamic Analysis and Constitutive Laws for Engineering Materials. vol. 2 G.N. Pande and J. Middleton, Eds.: Martinus-Nijhoff Publishers. pp. C4/1–13.Google Scholar
  27. Zi, G., Belytschko, T. 2003New crack-tip elements for XFEM and applications to cohesive cracksInternational Journal for Numerical Methods in Engineering5722212240CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • A. E. Huespe
    • 1
    Email author
  • J. Oliver
    • 1
  • M. D. G. Pulido
    • 1
  • S. Blanco
    • 1
  • D. Linero
    • 1
    • 2
  1. 1.E.T.S. d’ Enginyers de Camins, Canals i PortsTechnical University of Catalonia (UPC)BarcelonaSpain
  2. 2.Engineering SchoolNational University of ColombiaBogotáColombia

Personalised recommendations