International Journal of Fracture

, Volume 134, Issue 3–4, pp 231–250 | Cite as

Failure Analysis of Adhesively Bonded Structures: From Coupon Level Data to Structural Level Predictions and Verification

  • De Xie
  • Jaeung Chung
  • Anthony M. Waas
  • Khaled W. Shahwan
  • Jessica A. Schroeder
  • Raymond G. Boeman
  • Vlastimil Kunc
  • Lynn B. Klett
Article

Abstract

This paper presents a predictive methodology and verification through experiment for the analysis and failure of adhesively bonded, hat stiffened structures using coupon level input data. The hats were made of steel and carbon fiber reinforced polymer composite, respectively, and bonded to steel adherends. A critical strain energy release rate criterion was used to predict the failure loads of the structure. To account for significant geometrical changes observed in the structural level test, an adaptive virtual crack closure technique based on an updated local coordinate system at the crack tip was developed to calculate the strain energy release rates. Input data for critical strain energy release rates as a function of mode mixity was obtained by carrying out coupon level mixed mode fracture tests using the Fernlund–Spelt (FS) test fixture. The predicted loads at failure, along with strains at different locations, were compared with those measured from the structural level tests. The predictions were found to agree well with measurements for multiple replicates of adhesively bonded hat-stiffened structures made with steel hat/adhesive/steel and composite hat/adhesive/steel, thus validating the proposed methodology for failure prediction.

Keywords

Adhesively bonded structures failure analysis fracture toughness of adhesive mixed-mode fracture envelope strain energy release rates virtual crack closure technique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atluri, S.N. 1977Structural Integrity and DurabilityTech Science PressForsyth, GAGoogle Scholar
  2. Banks-Sills, L., Schwartz, J. 2002Fracture testing of Brazilian disk sandwich specimensInternational Journal of Fracture118191209CrossRefGoogle Scholar
  3. Bao, G., Ho, S., Suo, Z., Fan, B. 1992The role of material orthotropy in fracture specimens for compositesInternational Journal of Solids and Structures911051116Google Scholar
  4. Chai, H. 1986On the correlation between the Mode I failure of adhesive joints and laminated compositesEngineering Fracture Mechanics24413431CrossRefGoogle Scholar
  5. Chai, H. 1993Observation of deformation and damage at the tip of cracks in adhesive bonds loaded in shear and assessment of a criterion for fractureInternational Journal of Fracture60311326ADSGoogle Scholar
  6. Chung, J. and Waas, A.M. (2002, August). Computational and experimental schemes for modeling adhesively bonded structures, Phase I final report submitted to Joining Work Group/ACC-USCAR.Google Scholar
  7. Fernlund, G., Spelt, J.K. 1994aMixed-mode fracture characterisation of adhesive jointsComposites Science and Technology50441449CrossRefGoogle Scholar
  8. Fernlund, G., Spelt, J.K. 1994bMixed-mode energy release rates for adhesively bonded beam specimensJournal of Composites Technology and Research16234243ADSGoogle Scholar
  9. Hutchinson, J.W., Suo, Z. 1992Mixed-mode cracking in layered materialsAdvances in Applied Mechanics2963191MATHGoogle Scholar
  10. Krueger, R. The virtual crack closure technique: history, approach and applications. NASA/CR-2002-211628.Google Scholar
  11. Papini, M., Fernlund, G., Spelt, J.K. 1994The effect of geometry on the fracture of adhesive jointsInternational Journal of Adhesion Adhesives14513Google Scholar
  12. Reeder, J.R., Crews, J.H. 1990Mixed-mode bending method for delamination testingAIAA Journal2812701276CrossRefGoogle Scholar
  13. Rybicki, E.F., Kanninen, M.F. 1977A finite element calculation of stress intensity factors by a modified crack closure integralEngineering Fracture Mechanics9931938CrossRefGoogle Scholar
  14. Shivakumar, K.N., Tan, P.W., Newman, J.C.,Jr 1988A virtual crack-closure technique for calculating stress intensity factors for cracked three dimensional bodiesInternational Journal of Fracture36R43R50Google Scholar
  15. Suo, Z., Hutchinson, J.W. 1990Interface crack between two elastic layersInternational Journal of Fracture43118CrossRefGoogle Scholar
  16. Swadener, J.G., Liechti, K.M., Liang, Y.M. 2002Shear induced toughening in bonded joints: experiments and analysisInternational Journal of Fracture114113132CrossRefGoogle Scholar
  17. Wang, J.S., Suo, Z. 1990Experimental determination of interfacial toughness curves using Brazil-nut-sandwichesActa Metallurgica Et Materialia3812791290CrossRefGoogle Scholar
  18. Xiao, X.R., Foss, P.H., Schroeder, J.A. 2004aStiffness prediction of the double lap shear joint. Part 1: Analytical solutionInternational Journal of Adhesion and Adhesives24229237Google Scholar
  19. Xiao, X.R., Foss, P.H., Schroeder, J.A. 2004bStiffness prediction of the double lap shear joint. Part 1: Analytical solutionInternational Journal of Adhesion and Adhesives24239246Google Scholar
  20. Xie, D. and Biggers, S.B. (accepted). Strain energy release rate calculation for a moving crack front of arbitrary shape based on virtual crack closure technique. Engineering Fracture Mechanics.Google Scholar
  21. Xie, D. and Biggers, S.B. (Submitted). Progressive crack growth analysis using interface element based on the virtual crack closure technique. Finite Elements in Analysis and Design.Google Scholar
  22. Xie, D., Waas, A.M., Shahwan, K.W., Schroeder, J.A., Boeman, R.G. 2004Computation of Energy Release Rates for kinking cracks based on virtual crack closure techniqueComputer Modeling in Engineering & Sciences6515524MATHGoogle Scholar
  23. Xie, D., Waas, A.M., Schroeder, J.A. Shahwan, K.W. and Boeman, R.G. (in press). Fracture Criterion for kinking cracks in triple material adhesively bonded joints under mixed mode loading. Engineering Fracture Mechanics 72, 2487–2540.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • De Xie
    • 1
  • Jaeung Chung
    • 1
  • Anthony M. Waas
    • 1
  • Khaled W. Shahwan
    • 2
  • Jessica A. Schroeder
    • 3
  • Raymond G. Boeman
    • 4
  • Vlastimil Kunc
    • 4
  • Lynn B. Klett
    • 4
  1. 1.Department of Aerospace EngineeringThe University of MichiganAnn ArborUSA
  2. 2.Scientific LabsDaimlerChrysler CorporationAuburn HillsUSA
  3. 3.Research and Development CenterGeneral Motors CorporationWarrenUSA
  4. 4.Metals and Ceramics DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations