International Journal of Fracture

, Volume 132, Issue 1, pp 65–79 | Cite as

Estimation of mixed-mode stress intensity factors using digital image correlation and an interaction integral

  • J. Réthoré
  • A. Gravouil
  • F. Morestin
  • A. Combescure
Article

Abstract

This paper presents a technique for the experimental measurement of stress intensity factors in cracked specimens under mixed-mode loading. This technique is based on full-field measurement using digital image correlation and an interaction integral. Such domain-independent integrals are often used in the finite element method to calculate stress intensity factors. The main advantage of this technique is that the errors made in the estimation of the measured displacement field near the crack’s tip do not affect the measurement of the stress intensity factors. The capabilities of the method are illustrated through fracture measurements on compact tension specimens made of maraging steel. Another test under mixed-mode loading is presented.

Keywords

Digital image correlation elastic plastic transition interaction integral stress intensity factors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anbanto-Bueno, J. and Lambros, J. (2002). \newblock Investigation of crack growth in functionally graded materials using digital image correlation. Engineering Fracture Mechanics, (69), 1695--1711.Google Scholar
  2. Broek, D. (1982). Elementary Engineering Fracture Mechanics. Martinus Nijhoff Publishers.Google Scholar
  3. Bui, H.D. 1978Mécanique de la rupture fragileMassonParis/New YorkGoogle Scholar
  4. Chen, H.K. and Shield, R.T. (1977). Conservation laws in elasticity of the J-integral type. Journal of Applied Mathematics and Physics 28.Google Scholar
  5. Destuynder, Ph., Djaoua, M. and Lescure. S. (1983). Quelques remarques sur la mécanique de la rupture élatique. Journal de Mécanique Théorique et Appliquée 2(1).Google Scholar
  6. Hutchinson, J.W. 1968Singular behavior at the end of a tensile crack in a hardening materialJournal of the Mechanics and Physics of Solids161331Google Scholar
  7. Irwin, G.R. 1957Analysis of stress and strains near the end of a crack traversing a plateJournal of Applied Mechanics24361364Google Scholar
  8. Lee, Y.J., Lambros, J., Rosakis, A.J. 1996Analysis of coherent gradient sensing by fourier opticsOptics and Lasers in Engineering252553Google Scholar
  9. Liu, H.W. and Ke, J.S. (1975). Moire Method. Number 2 in Experimental techniques in fracture mechanics, II. SEM Monograph.Google Scholar
  10. McNeill, S.R., Peters, W.H., and Sutton, M.A. (1987). Estimation of stress intensity factor by digital image correlation. Engineering Fracture Mechanics 28(1).Google Scholar
  11. Mguil-Touchal, S., Morestin, F., Brunet, M. 1997Various Experimental Applications of Digital Image Correlation MethodRhodes. CMEM974558Google Scholar
  12. Moran, B., Shih, C.F. 1987Crack’s tip and associated domain integral from momentum and energy balanceEnginreering Fracture Mechanics27615642Google Scholar
  13. Noether, E. 1918Invariante variations-problemTransport Theory and Statistical Physics1183207Google Scholar
  14. Rice, J.R. 1968A path independant integral and the approximate analysis of strain concentration by notches and cracksJournal of Applied Mechanics35379386Google Scholar
  15. Rice, J.R., Rosengren, G.F. 1968Plane strain deformation near a crack tip in a power-law hardening materialJournal of the Mechanics and Physics of Solids16112Google Scholar
  16. Rosakis, A.J. (1993). Two optical techniques sensitive to gradient of optical path different: the method of caustics and the coherent gradient sensor. In Experimental Techniques in Fracture (Edited by Jonathan S. Epstein), 327–425.Google Scholar
  17. Rosakis, A.J., Ravi-Chandar, K. 1986On the crack tip stress state: an experimental evaluation of three-dimensional effectsInternational Journal of Solids and Structures22121136Google Scholar
  18. Suo, X.S., Combescure, A. 1992On the application of the \(\cal g\)θ method and its comparison with de Lorenzi’s approachNuclear Engineering and Design135207224Google Scholar
  19. Sutton, M.A., Cheng, M., Peters, W.H., Chao, Y.S., McNeill, S.R. 1986Application of an optimized digital image correlation method to planar deformation analysisImage Vision Computing4143150Google Scholar
  20. Sutton, M.A., Wolters, W.J., Peters, W.H., Ranson, W.F., McNeill, S.R. 1983Determination of displacements using an improved digital correlation methodImage Vision Computing1133139Google Scholar
  21. Touchal-Mguil, S. (1997). Une technique de corrélation d’images numériques: application à détermination de courbes limites de formages et proposition d’un critère de striction. Ph.D. thesis, INSA de Lyon.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • J. Réthoré
    • 1
  • A. Gravouil
    • 1
  • F. Morestin
    • 1
  • A. Combescure
    • 1
  1. 1.Laboratoire de Mécanique des Contacts et des SolidesInstitut National des Sciences Appliquées de LyonVilleurbanneFrance

Personalised recommendations