Advertisement

Formal Methods in System Design

, Volume 45, Issue 2, pp 165–188 | Cite as

Quantifier-free encoding of invariants for hybrid systems

  • Alessandro Cimatti
  • Sergio Mover
  • Stefano Tonetta
Article
  • 187 Downloads

Abstract

Hybrid systems are a clean modeling framework for embedded systems, which feature integrated discrete and continuous dynamics. A well-known source of complexity comes from the time invariants, which represent an implicit quantification of a constraint over all time points of a continuous transition.

Emerging techniques based on Satisfiability Modulo Theory (SMT) have been found promising for the verification and validation of hybrid systems because they combine discrete reasoning with solvers for first-order theories. However, these techniques are efficient for quantifier-free theories and the current approaches have so far either ignored time invariants or have been limited to hybrid systems with linear constraints.

In this paper, we propose a new method that encodes a class of hybrid systems into transition systems with quantifier-free formulas. The method does not rely on expensive quantifier elimination procedures. Rather, it exploits the sequential nature of the transition system to split the continuous evolution enforcing the invariants on the discrete time points. This way, we can encode all hybrid systems whose invariants can be expressed in terms of polynomial constraints. This pushes the application of SMT-based techniques beyond the standard linear case.

Keywords

Satisfiability modulo theory Hybrid systems Bounded model checking 

References

  1. 1.
    Ábrahám E, Becker B, Klaedtke F, Steffen M (2005) Optimizing bounded model checking for linear hybrid systems. In: VMCAI, pp 396–412 Google Scholar
  2. 2.
    Alur R (2011) Formal verification of hybrid systems. In: EMSOFT, pp 273–278 Google Scholar
  3. 3.
    Alur R, Courcoubetis C, Henzinger TA, Ho P-H (1992) Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems. In: Hybrid systems, pp 209–229 Google Scholar
  4. 4.
    Asarin E, Dang T, Maler O, Bournez O (2000) Approximate reachability analysis of piecewise-linear dynamical systems. In: HSCC, pp 20–31 Google Scholar
  5. 5.
    Audemard G, Bozzano M, Cimatti A, Sebastiani R (2005) Verifying industrial hybrid systems with MathSAT. Electron Notes Theor Comput Sci 119(2):17–32 CrossRefGoogle Scholar
  6. 6.
    Barrett CW, Sebastiani R, Seshia SA, Tinelli C (2009) Satisfiability modulo theories. In: Handbook of satisfiability, pp 825–885 Google Scholar
  7. 7.
    Biere A, Cimatti A, Clarke EM, Zhu Y (1999) Symbolic model checking without BDDs. In: TACAS, pp 193–207 Google Scholar
  8. 8.
    Bozzano M, Cimatti A, Katoen J-P, Nguyen VY, Noll T, Roveri M (2011) Safety, dependability and performance analysis of extended AADL models. Comput J 54(5):754–775 CrossRefGoogle Scholar
  9. 9.
    Bozzano M, Cimatti A, Katoen J-P, Nguyen VY, Noll T, Roveri M, Wimmer R (2010) A model checker for AADL. In: CAV, pp 562–565 Google Scholar
  10. 10.
    Bu L, Cimatti A, Li X, Mover S, Tonetta S (2010) Model checking of hybrid systems using shallow synchronization. In: FORTE Google Scholar
  11. 11.
    Bu L, Zhao J, Li X (2010) Path-oriented reachability verification of a class of nonlinear hybrid automata using convex programming. In: VMCAI, pp 78–94 Google Scholar
  12. 12.
    Casagrande A, Casey K, Falchi R, Piazza C, Ruperti B, Vizzotto G, Mishra B (2007) Translating time-course gene expression profiles into semi-algebraic hybrid automata via dimensionality reduction. In: AB, pp 51–65 Google Scholar
  13. 13.
    Cimatti A, Mover S, Tonetta S (2011) Efficient scenario verification for hybrid automata. In: CAV, pp 317–332 Google Scholar
  14. 14.
    Cimatti A, Mover S, Tonetta S (2011) HyDI: a language for symbolic hybrid systems with discrete interaction. In: EUROMICRO-SEAA Google Scholar
  15. 15.
    Cimatti A, Mover S, Tonetta S (2011) Proving and explaining the unfeasibility of message sequence charts for hybrid systems. In: FMCAD Google Scholar
  16. 16.
    Cimatti A, Mover S, Tonetta S (2012) A quantifier-free SMT encoding of non-linear hybrid automata. In: FMCAD, pp 187–195 Google Scholar
  17. 17.
    Cimatti A, Roveri M, Tonetta S (2009) Requirements validation for hybrid systems. In: CAV, pp 188–203 Google Scholar
  18. 18.
    de Alfaro L, Manna Z (1995) Verification in continuous time by discrete reasoning. In: AMAST, pp 292–306 Google Scholar
  19. 19.
    Dolzmann A, Sturm T, Weispfenning V (1998) Real quantifier elimination in practice. In: Algorithmic algebra and number theory. Springer, Berlin, pp 221–247 Google Scholar
  20. 20.
    Eggers A, Fränzle M, Herde C (2008) SAT modulo ODE: a direct SAT approach to hybrid systems. In: ATVA, pp 171–185 Google Scholar
  21. 21.
    Eggers A, Ramdani N, Nedialkov N, Fränzle M (2011) Improving SAT modulo ODE for hybrid systems analysis by combining different enclosure methods. In: SEFM, pp 172–187 Google Scholar
  22. 22.
    Fränzle M (2001) What will be eventually true of polynomial hybrid automata? In: TACS, pp 340–359 Google Scholar
  23. 23.
    Frehse G, Le Guernic C, Donzé A, Cotton S, Ray R, Lebeltel O, Ripado R, Girard A, Dang T, Maler O (2011) SpaceEx: scalable verification of hybrid systems. In: CAV, pp 379–395 Google Scholar
  24. 24.
    Graf S, Saïdi H (1997) Construction of abstract state graphs with PVS. In: CAV, pp 72–83 Google Scholar
  25. 25.
    Henzinger TA, Ho P-H, Wong-Toi H (1998) Algorithmic analysis of nonlinear hybrid systems. IEEE Trans Autom Control 43(4):540–554 MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Herde C, Eggers A, Fränzle M, Teige T (2008) Analysis of hybrid systems using HySAT. In: ICONS, pp 196–201 Google Scholar
  27. 27.
    Ishii D, Ueda K, Hosobe H (2011) An interval-based SAT modulo ODE solver for model checking nonlinear hybrid systems. Int J Softw Tools Technol Transfer 13(5):449–461 CrossRefGoogle Scholar
  28. 28.
    Jha S, Brady BA, Seshia SA (2007) Symbolic reachability analysis of lazy linear hybrid automata. In: FORMATS, pp 241–256 Google Scholar
  29. 29.
    King T, Barrett C (2011) Exploring and categorizing error spaces using BMC and SMT. In: SMT Google Scholar
  30. 30.
    Lafferriere G, Pappas GJ, Yovine S (2001) Symbolic reachability computation for families of linear vector fields. J Symb Comput 32(3):231–253 MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    McMillan KL (2003) Interpolation and SAT-based model checking. In: CAV, pp 1–13 Google Scholar
  32. 32.
    Mover S, Cimatti A, Tiwari A, Tonetta S (2013) Time-aware relational abstractions for hybrid systems. In: EMSOFT, pp 1–10 Google Scholar
  33. 33.
    Plaku E, Kavraki LE, Vardi MY (2009) Hybrid systems: from verification to falsification by combining motion planning and discrete search. Form Methods Syst Des 34(2):157–182 CrossRefMATHGoogle Scholar
  34. 34.
    Platzer A, Clarke EM (2007) The image computation problem in hybrid systems model checking. In: HSCC, pp 473–486 Google Scholar
  35. 35.
    Platzer A, Clarke EM (2009) Formal verification of curved flight collision avoidance maneuvers: a case study. In: FM, pp 547–562 Google Scholar
  36. 36.
    Rabinovich AM (1998) On the decidability of continuous time specification formalisms. J Log Comput 8(5):669–678 MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Sankaranarayanan S, Tiwari A (2011) Relational abstractions for continuous and hybrid systems. In: CAV, pp 686–702 Google Scholar
  38. 38.
    Sheeran M, Singh S, Stålmarck G (2000) Checking safety properties using induction and a SAT-solver. In: FMCAD, pp 108–125 Google Scholar
  39. 39.
    Tiwari A (2008) Abstractions for hybrid systems. Form Methods Syst Des 32(1):57–83 CrossRefMATHGoogle Scholar
  40. 40.
    Tonetta S (2009) Abstract model checking without computing the abstraction. In: FM, pp 89–105 Google Scholar
  41. 41.
    Yushtein Y, Bozzano M, Cimatti A, Katoen J-P, Nguyen VY, Noll Th, Olive X, Roveri M (2011) System-software co-engineering: dependability and safety perspective. In: SMC-IT. IEEE Comput. Sci., Los Alamitos, pp 18–25 Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Alessandro Cimatti
    • 1
  • Sergio Mover
    • 1
  • Stefano Tonetta
    • 1
  1. 1.Fondazione Bruno KesslerTrentoItaly

Personalised recommendations