Formal Methods in System Design

, Volume 44, Issue 2, pp 101–148 | Cite as

Numerical invariants through convex relaxation and max-strategy iteration

Article
  • 151 Downloads

Abstract

We present an algorithm for computing the uniquely determined least fixpoints of self-maps on \(\overline{\mathbb{R}}^{n}\) (with \(\overline{\mathbb{R}} = \mathbb{R} \cup\{ \pm\infty\}\)) that are point-wise maximums of finitely many monotone and order-concave self-maps. This natural problem occurs in the context of systems analysis and verification. As an example application we discuss how our method can be used to compute template-based quadratic invariants for linear systems with guards. The focus of this article, however, lies on the discussion of the underlying theory and the properties of the algorithm itself.

Keywords

Fixpoint algorithms Systems verification Convex optimization 

Notes

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions.

References

  1. 1.
    Adjé A, Gaubert S, Goubault E (2010) Coupling policy iteration with semi-definite relaxation to compute accurate numerical invariants in static analysis. In: Gordon AD (ed) ESOP. Lecture notes in computer science, vol 6012. Springer, Berlin, pp 23–42. ISBN 978-3-642-11956-9 CrossRefGoogle Scholar
  2. 2.
    Alegre F, Feron E, Pande S (2009) Using ellipsoidal domains to analyze control systems software. arXiv:0909.1977
  3. 3.
    Caspi P, Pilaud D, Halbwachs N, Plaice J (1987) Lustre: a declarative language for programming synchronous systems. In: POPL. ACM, New York, pp 178–188. ISBN 0-89791-215-2 CrossRefGoogle Scholar
  4. 4.
    Costan A, Gaubert S, Goubault E, Martel M, Putot S (2005) A policy iteration algorithm for computing fixed points in static analysis of programs. In: Computer aided verification, 17th int conf (CAV). Lecture notes in computer science, vol 3576. Springer, Berlin, pp 462–475 CrossRefGoogle Scholar
  5. 5.
    Cousot P, Cousot R (1976) Static determination of dynamic properties of programs. In: Second int symp on programming. Dunod, Paris, pp 106–130 Google Scholar
  6. 6.
    Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp 238–252 Google Scholar
  7. 7.
    Dang T, Gawlitza TM (2011) Template-based unbounded time verification of affine hybrid automata. In: Yang H (ed) APLAS. Lecture notes in computer science, vol 7078. Springer, Berlin, pp 34–49. ISBN 978-3-642-25317-1 CrossRefGoogle Scholar
  8. 8.
    Dang T, Gawlitza TM (2011) Discretizing affine hybrid automata with uncertainty. In: Bultan T, Hsiung P-A (eds) ATVA. Lecture notes in computer science, vol 6996. Springer, Berlin, pp 473–481. ISBN 978-3-642-24371-4 CrossRefGoogle Scholar
  9. 9.
    Fearnley J (2010) Exponential lower bounds for policy iteration. In: Abramsky S, Gavoille C, Kirchner C, Meyer auf der Heide F, Spirakis PG (eds) ICALP (2). Lecture notes in computer science, vol 6199. Springer, Berlin, pp 551–562. ISBN 978-3-642-14161-4 CrossRefGoogle Scholar
  10. 10.
    Gawlitza T, Seidl H (2007) Precise relational invariants through strategy iteration. In: Duparc J, Henzinger TA (eds) CSL. Lecture notes in computer science, vol 4646. Springer, Berlin, pp 23–40. ISBN 978-3-540-74914-1 CrossRefGoogle Scholar
  11. 11.
    Gawlitza T, Seidl H (2007) Precise fixpoint computation through strategy iteration. In: Nicola RD (ed) ESOP. Lecture notes in computer science, vol 4421. Springer, Berlin, pp 300–315. ISBN 978-3-540-71314-2 CrossRefGoogle Scholar
  12. 12.
    Gawlitza T, Seidl H (2008) Precise interval analysis vs. parity games. In: Cuéllar J, Maibaum TSE, Sere K (eds) FM. Lecture notes in computer science, vol 5014. Springer, Berlin, pp 342–357. ISBN 978-3-540-68235-6 CrossRefGoogle Scholar
  13. 13.
    Gawlitza TM, Seidl H (2010) Computing relaxed abstract semantics w.r.t. quadratic zones precisely. In: Cousot R, Martel M (eds) SAS. Lecture notes in computer science, vol 6337. Springer, Berlin, pp 271–286. ISBN 978-3-642-15768-4 CrossRefGoogle Scholar
  14. 14.
    Gawlitza TM, Seidl H (2011) Solving systems of rational equations through strategy iteration. ACM Trans Program Lang Syst 33(3):11 CrossRefGoogle Scholar
  15. 15.
    Gawlitza TM, Seidl H, Adjé A, Gaubert S, Goubault É (2011) Abstract interpretation meets convex optimization. In: WING-JSC Google Scholar
  16. 16.
    Girard A (2005) Reachability of uncertain linear systems using zonotopes. In: Morari M, Thiele L (eds) HSCC. Lecture notes in computer science, vol 3414. Springer, Berlin, pp 291–305. ISBN 3-540-25108-1 Google Scholar
  17. 17.
    Halbwachs N (2005) A synchronous language at work: the story of lustre. In: MEMOCODE. IEEE Press, New York, pp 3–11 Google Scholar
  18. 18.
    Halbwachs N, Lagnier F, Ratel C (1992) Programming and verifying real-time systems by means of the synchronous data-flow language lustre. IEEE Trans Softw Eng 18(9):785–793 CrossRefGoogle Scholar
  19. 19.
    Larsen KG, Larsson F, Pettersson P, Yi W (1997) Efficient verification of real-time systems: compact data structure and state-space reduction. In: IEEE real-time systems symposium. IEEE Comput Soc, Los Alamitos, pp 14–24 Google Scholar
  20. 20.
    Massé D (2012) Proving termination by policy iteration. Electron Notes Theor Comput Sci 287:77–88. doi:10.1016/j.entcs.2012.09.008 CrossRefGoogle Scholar
  21. 21.
    Miné A (2001) A new numerical abstract domain based on difference-bound matrices. In: Danvy O, Filinski A (eds) PADO. Lecture notes in computer science, vol 2053. Springer, Berlin, pp 155–172. ISBN 3-540-42068-1 Google Scholar
  22. 22.
    Miné A (2001) The octagon abstract domain. In: WCRE, p 310 Google Scholar
  23. 23.
    Nemirovski A (2005) Modern convex optimization. Department ISYE, Georgia Institute of Technology Google Scholar
  24. 24.
    Roux P, Garoche P-L (2012) Policy iterations as traditional abstract domains Google Scholar
  25. 25.
    Roux P, Jobredeaux R, Garoche P-L, Feron E (2012) A generic ellipsoid abstract domain for linear time invariant systems. In: Dang T, Mitchell IM (eds) HSCC. ACM, New York, pp 105–114. ISBN 978-1-4503-1220-2 CrossRefGoogle Scholar
  26. 26.
    Sankaranarayanan S, Sipma HB, Manna Z (2005) Scalable analysis of linear systems using mathematical programming. In: Cousot R (ed) VMCAI. Lecture notes in computer science, vol 3385. Springer, Berlin, pp 25–41. ISBN 3-540-24297-X Google Scholar
  27. 27.
    Sankaranarayanan S, Dang T, Ivancic F (2008) A policy iteration technique for time elapse over template polyhedra. In: Egerstedt M, Mishra B (eds) HSCC. Lecture notes in computer science, vol 4981. Springer, Berlin, pp 654–657. ISBN 978-3-540-78928-4 CrossRefGoogle Scholar
  28. 28.
    Tarski A (1955) A lattice-theoretical fixpoint theorem and its applications. Pac J Math 5:285–309 CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Todd MJ (2001) Semidefinite optimization. Acta Numer 10:515–560 CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Yovine S (1996) Model checking timed automata. In: Rozenberg G, Vaandrager FW (eds) European educational forum: school on embedded systems. Lecture notes in computer science, vol 1494. Springer, Berlin, pp 114–152. ISBN 3-540-65193-4 Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Carl von Ossietzky Universität OldenburgOldenburgGermany
  2. 2.The University of SydneySydneyAustralia
  3. 3.Technische Universität MünchenMunichGermany

Personalised recommendations