Formal Methods in System Design

, Volume 43, Issue 3, pp 493–519 | Cite as

Symbolic unfolding of parametric stopwatch Petri nets

  • Claude Jard
  • Didier Lime
  • Olivier H. Roux
  • Louis-Marie Traonouez
Article
  • 127 Downloads

Abstract

We address the problem of unfolding safe parametric stopwatch time Petri nets (PSwPNs), i.e., safe time Petri nets (TPNs) possibly extended with time parameters and stopwatches. We extend the notion of branching process to account for the dates of the occurrences of events and thus define a symbolic unfolding for PSwPNs. In the case of TPNs we also propose a method based on our so-called time branching processes to compute a finite complete prefix of the symbolic unfolding. The originality of our work relies on a precise handling of direct conflicts between events, and the analysis of their effects on the constraints between the firing dates of those events.

Keywords

Time Petri nets Unfoldings Stopwatches Parameters 

References

  1. 1.
    Abdulla PA, Iyer SP, Nylen A (2000) Unfoldings of unbounded Petri nets. In: Proceedings of CAV. Lecture notes in computer science, vol 1855. Springer, Berlin, pp 495–507 Google Scholar
  2. 2.
    Aura T, Lilius J (2000) A causal semantics for time Petri nets. Theor Comput Sci 243(2):409–447 MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Baldan P, Busi N, Corradini A, Pinna GM (2000) Functorial concurrent semantics for Petri nets with read and inhibitor arcs. In: CONCUR. Lecture notes in computer science, vol 1877. Springer, Berlin, pp 442–457 Google Scholar
  4. 4.
    Berthomieu B, Diaz M (1991) Modeling and verification of time dependent systems using time Petri nets. IEEE Trans Softw Eng 17(3):259–273 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Berthomieu B, Lime D, Roux OH, Vernadat F (2007) Reachability problems and abstract state spaces for time Petri nets with stopwatches. Discrete Event Dyn Syst 17(2):133–158 MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Berthomieu B, Menasche M (1983) An enumerative approach for analyzing time Petri nets. In: Mason REA (ed) Information processing: proceedings of the IFIP congress 1983. IFIP congress series, vol 9. Elsevier Science, Amsterdam, pp 41–46 Google Scholar
  7. 7.
    Bouyer P, Haddad S, Reynier PA (2006) Timed unfoldings for networks of timed automata. In: Graf S, Zhang W (eds) Proceedings of the 4th international symposium on automated technology for verification and analysis (ATVA’06), Beijing, China. Lecture notes in computer science, vol 4218. Springer, Berlin, pp 292–306 CrossRefGoogle Scholar
  8. 8.
    Cassez F, Chatain T, Jard C (2006) Symbolic unfoldings for networks of timed automata. In: Graf S, Zhang W (eds) Proceedings of the 4th international symposium on automated technology for verification and analysis (ATVA’06), Beijing, China. Lecture notes in computer science, vol 4218. Springer, Berlin, pp 307–321 CrossRefGoogle Scholar
  9. 9.
    Chatain T, Jard C (2006) Complete finite prefixes of symbolic unfoldings of safe time Petri nets. In: Proceedings of ICATPN. Lecture notes in computer science, vol 4024. Springer, Berlin, pp 125–145 Google Scholar
  10. 10.
    Chatain T, Khomenko V (2007) On the well-foundedness of adequate orders used for construction of complete unfolding prefixes. Inf Process Lett 104(4):129–136 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Dill D (1989) Timing assumptions and verification of finite-state concurrent systems. In: Proceedings of workshop on computer aided verification methods for finite state systems, vol 407, pp 197–212 CrossRefGoogle Scholar
  12. 12.
    Esparza J (1994) Model checking using net unfoldings. Sci Comput Program 23:151–195 MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Esparza J, Heljanko K (2008) Unfoldings, a partial-order approach to model checking. Monographs in theoretical computer science. Springer, Berlin MATHGoogle Scholar
  14. 14.
    Esparza J, Römer S, Vogler W (2002) An improvement of McMillan’s unfolding algorithm. Form Methods Syst Des 20(3):285–310 CrossRefMATHGoogle Scholar
  15. 15.
    Fabre E, Benveniste A, Haar S, Jard C (2005) Distributed monitoring of concurrent and asynchronous systems. Discrete Event Dyn Syst 15(1):33–84 MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Gardey G, Roux OH, Roux OF (2006) State space computation and analysis of time Petri nets. Theory Pract Log Program 6(3):301–320. Special issue on specification analysis and verification of reactive systems MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Grabiec B, Traonouez LM, Jard C, Lime D, Roux OH (2010) Diagnosis using unfoldings of parametric time Petri nets. In: Chatterjee K, Henzinger TA (eds) 8th international conference on formal modelling and analysis of timed systems (FORMATS 2010), Vienna, Austria. Lecture notes in computer science, vol 6246. Springer, Berlin, pp 137–151 CrossRefGoogle Scholar
  18. 18.
    Henzinger T, Kopke P, Puri A, Varaiya P (1998) What’s decidable about hybrid automata? J Comput Syst Sci 57:94–124 MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Khomenko V, Koutny M (2003) Branching processes of high-level Petri nets. In: Proceedings of TACAS. Lecture notes in computer science, vol 2619. Springer, Berlin, pp 458–472 Google Scholar
  20. 20.
    Lime D, Roux OH (2004) A translation-based method for the timed analysis of scheduling extended time Petri nets. In: 25th IEEE real-time systems symposium (RTSS 2004), Lisbon, Portugal. IEEE Computer Society Press, Los Alamitos, pp 187–196 CrossRefGoogle Scholar
  21. 21.
    Lime D, Roux OH (2006) Model checking of time Petri nets using the state class timed automaton. Discrete Event Dyn Syst 16(2):179–205 MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Lime D, Roux OH (2009) Formal verification of real-time systems with preemptive scheduling. Real-Time Syst 41(2):118–151 CrossRefMATHGoogle Scholar
  23. 23.
    Lime D, Roux OH, Seidner C, Traonouez LM (2009) Romeo: a parametric model-checker for Petri nets with stopwatches. In: Kowalewski S, Philippou A (eds) 15th international conference on tools and algorithms for the construction and analysis of systems (TACAS 2009), York, United Kingdom. Lecture notes in computer science, vol 5505. Springer, Berlin, pp 54–57 CrossRefGoogle Scholar
  24. 24.
    Margaria T, Steffen B (eds) (1996) An improvement of McMillan’s unfolding algorithm, Passau, Germany. Lecture notes in computer science, vol 1055. Springer, Berlin Google Scholar
  25. 25.
    McMillan KL (1992) Using unfolding to avoid the state space explosion problem in the verification of asynchronous circuits. In: Proceedings of computer aided verification (CAV’92). Lecture notes in computer science, vol 663. Springer, Berlin, pp 164–177 CrossRefGoogle Scholar
  26. 26.
    Merlin PM (1974) A study of the recoverability of computing systems. PhD thesis, Department of Information and Computer Science, University of California, Irvine, CA Google Scholar
  27. 27.
    Traonouez LM, Grabiec B, Jard C, Lime D, Roux OH (2010) Symbolic unfolding of parametric stopwatch Petri nets. In: Bouajjani A, Chin WN (eds) 8th international symposium on automated technology for verification and analysis (ATVA 2010), Singapore. Lecture notes in computer science, vol 6252. Springer, Berlin, pp 291–305 CrossRefGoogle Scholar
  28. 28.
    Traonouez LM, Lime D, Roux OH (2009) Parametric model-checking of stopwatch Petri nets. J Univers Comput Sci 15(17):3273–3304 MathSciNetMATHGoogle Scholar
  29. 29.
    Vogler W, Semenov AL, Yakovlev A (1998) Unfolding and finite prefix for nets with read arcs. In: Sangiorgi D, de Simone R (eds) 9th international conference on concurrency theory (CONCUR’98), Nice, France. Lecture notes in computer science, vol 1466. Springer, Berlin, pp 501–516 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Claude Jard
    • 1
  • Didier Lime
    • 2
  • Olivier H. Roux
    • 2
  • Louis-Marie Traonouez
    • 3
  1. 1.Université de NantesNantesFrance
  2. 2.École Centrale de NantesNantesFrance
  3. 3.INRIARennesFrance

Personalised recommendations