Advertisement

Formal Methods in System Design

, Volume 43, Issue 2, pp 233–267 | Cite as

Computable fixpoints in well-structured symbolic model checking

  • N. Bertrand
  • P. SchnoebelenEmail author
Article

Abstract

We prove a general finite-time convergence theorem for fixpoint expressions over a well-quasi-ordered set. This has immediate applications for the verification of well-structured systems, where a main issue is the computability of fixpoint expressions, and in particular for game-theoretical properties and probabilistic systems where nesting and alternation of least and greatest fixpoints are common.

Keywords

Verification of well-structured systems Verification of probabilistic systems mu-Calculus Infinite-state systems 

Notes

Acknowledgements

This article is a long and improved version of a conference paper originally coauthored with Christel Baier [14]. It owes a lot to her ideas and contributions but unfortunately she could not join us and sign here because she is co-editing this special issue.

References

  1. 1.
    Abdulla PA, Baier C, Purushothaman Iyer S, Jonsson B (2005) Simulating perfect channels with probabilistic lossy channels. Inf Comput 197(1–2):22–40. doi: 10.1016/j.ic.2004.12.001 CrossRefzbMATHGoogle Scholar
  2. 2.
    Abdulla PA, Ben Henda N, de Alfaro L, Mayr R, Sandberg S (2008) Stochastic games with lossy channels. In: Proc 11th int conf foundations of software science and computational structures (FOSSACS 2008). Lecture notes in computer science, vol 4962. Springer, Berlin, pp 35–49. doi: 10.1007/978-3-540-78499-9_4 Google Scholar
  3. 3.
    Abdulla PA, Bertrand N, Rabinovich A, Schnoebelen P (2005) Verification of probabilistic systems with faulty communication. Inf Comput 202(2):141–165. doi: 10.1016/j.ic.2005.05.008 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Abdulla PA, Bouajjani A, Jonsson B, Nilsson M (1999) Handling global conditions in parameterized system verification. In: Proc 11th int conf computer aided verification (CAV 1999). Lecture notes in computer science, vol 1633. Springer, Berlin, pp 134–145. doi: 10.1007/3-540-48683-6_14 CrossRefGoogle Scholar
  5. 5.
    Abdulla PA, Bouajjani A, d’Orso J (2003) Deciding monotonic games. In: Proc 17th int workshop computer science logic (CSL 2003) and 8th Kurt Gödel coll (KGL 2003). Lecture notes in computer science, vol 2803. Springer, Berlin, pp 1–14. doi: 10.1007/978-3-540-45220-1_1 Google Scholar
  6. 6.
    Abdulla PA, Čerāns K, Jonsson B, Tsay YK (2000) Algorithmic analysis of programs with well quasi-ordered domains. Inf Comput 160(1/2):109–127. doi: 10.1006/inco.1999.2843 CrossRefzbMATHGoogle Scholar
  7. 7.
    Abdulla PA, Collomb-Annichini A, Bouajjani A, Jonsson B (2004) Using forward reachability analysis for verification of lossy channel systems. Form Methods Syst Des 25(1):39–65. doi: 10.1023/B:FORM.0000033962.51898.1a CrossRefzbMATHGoogle Scholar
  8. 8.
    Abdulla PA, Jonsson B (1996) Undecidable verification problems for programs with unreliable channels. Inf Comput 130(1):71–90. doi: 10.1006/inco.1996.0083 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Abdulla PA, Jonsson B (1996) Verifying programs with unreliable channels. Inf Comput 127(2):91–101. doi: 10.1006/inco.1996.0053 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Abdulla PA, Jonsson B, Nilsson M, Saksena M (2004) A survey of regular model checking. In: Proc 15th int conf concurrency theory (CONCUR 2004). Lecture notes in computer science, vol 3170. Springer, Berlin, pp 35–48. doi: 10.1007/978-3-540-28644-8_3 CrossRefGoogle Scholar
  11. 11.
    Alur R, Henzinger T, Kupferman O (2002) Alternating-time temporal logic. J ACM 49(5):672–713 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Arnold A, Niwiński D (2001) Rudiments of μ-calculus, studies in logic and the foundations of mathematics, vol 146. Elsevier, Amsterdam Google Scholar
  13. 13.
    Baier C, Bertrand N, Schnoebelen P (2006) A note on the attractor-property of infinite-state Markov chains. Inf Process Lett 97(2):58–63. doi: 10.1016/j.ipl.2005.09.011 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Baier C, Bertrand N, Schnoebelen P (2006) On computing fixpoints in well-structured regular model checking, with applications to lossy channel systems. In: Proc 13th int conf on logic for programming and artificial intelligence, and reasoning (LPAR 2006). Lecture notes in computer science, vol 4246. Springer, Berlin, pp 347–361. doi: 10.1007/11916277_24 CrossRefGoogle Scholar
  15. 15.
    Baier C, Bertrand N, Schnoebelen P (2007) Verifying nondeterministic probabilistic channel systems against ω-regular linear-time properties. ACM Transactions on Computational Logic 9(1):5. doi: 10.1145/1297658.1297663 MathSciNetCrossRefGoogle Scholar
  16. 16.
    Baier C, Engelen B (1999) Establishing qualitative properties for probabilistic lossy channel systems: an algorithmic approach. In: Proc 5th int AMAST workshop formal methods for real-time and probabilistic systems (ARTS 1999). Lecture notes in computer science, vol 1601. Springer, Berlin, pp 34–52. doi: 10.1007/3-540-48778-6_3 CrossRefGoogle Scholar
  17. 17.
    Baier C, Katoen JP (2008) Principles of model checking. MIT Press, Cambridge zbMATHGoogle Scholar
  18. 18.
    Bardin S, Finkel A, Leroux J, Schnoebelen P (2005) Flat acceleration in symbolic model checking. In: Proc 3rd int symp automated technology for verification and analysis (ATVA 2005). Lecture notes in computer science, vol 3707. Springer, Berlin, pp 474–488. doi: 10.1007/11562948_35 CrossRefGoogle Scholar
  19. 19.
    Bertrand N, Schnoebelen P (2012) Revisiting stochastic games on lossy channel systems. Submitted for publication Google Scholar
  20. 20.
    Boigelot B (2003) On iterating linear transformations over recognizable sets of integers. Theor Comput Sci 309(1–3):413–468. doi: 10.1016/S0304-3975(03)00314-1 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Boigelot B, Godefroid P (1999) Symbolic verification of communication protocols with infinite state spaces using QDDs. Form Methods Syst Des 14(3):237–255. doi: 10.1023/A:1008719024240 CrossRefGoogle Scholar
  22. 22.
    Boigelot B, Legay A, Wolper P (2003) Iterating transducers in the large. In: Proc 15th int conf computer aided verification (CAV 2003). Lecture notes in computer science, vol 2725. Springer, Berlin, pp 223–235. doi: 10.1007/978-3-540-45069-6_24 CrossRefGoogle Scholar
  23. 23.
    Boigelot B, Legay A, Wolper P (2004) Omega-regular model checking. In: Proc 10th int conf tools and algorithms for the construction and analysis of systems (TACAS 2004). Lecture notes in computer science, vol 2988. Springer, Berlin, pp 561–575. doi: 10.1007/978-3-540-24730-2_41 CrossRefGoogle Scholar
  24. 24.
    Bouajjani A, Habermehl P, Moro P, Vojnar T (2005) Verifying programs with dynamic 1-selector-linked structures in regular model checking. In: Proc 11th int conf tools and algorithms for the construction and analysis of systems (TACAS 2005). Lecture notes in computer science, vol 3440. Springer, Berlin, pp 13–39. doi: 10.1007/978-3-540-31980-1_2 CrossRefGoogle Scholar
  25. 25.
    Bouajjani A, Habermehl P, Vojnar T (2004) Abstract regular model checking. In: Proc 16th int conf computer aided verification (CAV 2004). Lecture notes in computer science, vol 3114. Springer, Berlin, pp 372–386. doi: 10.1007/978-3-540-27813-9_29 CrossRefGoogle Scholar
  26. 26.
    Bouajjani A, Jonsson B, Nilsson M, Touili T (2000) Regular model checking. In: Proc 12th int conf computer aided verification (CAV 2000). Lecture notes in computer science, vol 1855. Springer, Berlin, pp 403–418. doi: 10.1007/10722167_31 CrossRefGoogle Scholar
  27. 27.
    Bouyer P, Markey N, Ouaknine J, Schnoebelen P, Worrell J (2012) On termination and invariance for faulty channel machines. Form Asp Comput 24(4–6):595–607. doi: 10.1007/s00165-012-0234-7 MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Bouyer P, Markey N, Reynier PA (2008) Robust analysis of timed automata via channel machines. In: Proc 11th int conf foundations of software science and computational structures (FOSSACS 2008). Lecture notes in computer science, vol 4962. Springer, Berlin, pp 157–171. doi: 10.1007/978-3-540-78499-9_12 Google Scholar
  29. 29.
    Bozzelli L, Pinchinat S (2012) Verification of gap-order constraint abstractions of counter systems. In: Proc 13th int conf verification, model checking, and abstract interpretation (VMCAI 2012). Lecture notes in computer science, vol 7148. Springer, Berlin, pp 88–103. doi: 10.1007/978-3-642-27940-9_7 CrossRefGoogle Scholar
  30. 30.
    Bradfield JC, Stirling C (2001) Modal logics and mu-calculi: an introduction. In: Bergstra JA, Ponse A, Smolka SA (eds) Handbook of process algebra. Elsevier, Amsterdam, pp 293–330. Chap 4 CrossRefGoogle Scholar
  31. 31.
    Cécé G, Finkel A, Purushothaman Iyer S (1996) Unreliable channels are easier to verify than perfect channels. Inf Comput 124(1):20–31. doi: 10.1006/inco.1996.0003 CrossRefzbMATHGoogle Scholar
  32. 32.
    Čerāns K (1994) Deciding properties of integral relational automata. In: Proc 21st int coll automata, languages, and programming (ICALP 1994). Lecture notes in computer science, vol 820. Springer, Berlin, pp 35–46. doi: 10.1007/3-540-58201-0_56 CrossRefGoogle Scholar
  33. 33.
    Chambart P, Schnoebelen P (2008) The ordinal recursive complexity of lossy channel systems. In: Proc 23rd IEEE symp logic in computer science (LICS 2008). IEEE Comput Soc, Los Alamitos, pp 205–216. doi: 10.1109/LICS.2008.47 Google Scholar
  34. 34.
    Cousot P (2003) Verification by abstract interpretation. In: Verification: theory & practice. Lecture notes in computer science, vol 2772. Springer, Berlin, pp 243–268. doi: 10.1007/978-3-540-39910-0_11 CrossRefGoogle Scholar
  35. 35.
    de Alfaro L, Henzinger TA, Majumdar R (2001) Symbolic algorithms for infinite-state games. In: Proc 12th int conf concurrency theory (CONCUR 2001). Lecture notes in computer science, vol 2154. Springer, Berlin, pp 536–550. doi: 10.1007/3-540-44685-0_36 CrossRefGoogle Scholar
  36. 36.
    Delzanno G, Raskin JF, Van Begin L (2004) Covering sharing trees: a compact data structure for parameterized verification. Int J Softw Tools Technol Transf 5(2–3):268–297. doi: 10.1007/s10009-003-0110-0 CrossRefGoogle Scholar
  37. 37.
    Demri S, Lazić R (2009) LTL with the freeze quantifier and register automata. ACM Trans Computational Logic 10(3):16. doi: 10.1145/1507244.1507246 Google Scholar
  38. 38.
    Dufourd C, Finkel A, Schnoebelen P (1998) Reset nets between decidability and undecidability. In: Proc 25th int coll automata, languages, and programming (ICALP 1998). Lecture notes in computer science, vol 1443. Springer, Berlin, pp 103–115. doi: 10.1007/BFb0055044 CrossRefGoogle Scholar
  39. 39.
    Emerson EA (1990) Temporal and modal logic. In: van Leeuwen J (ed) Handbook of theoretical computer science, vol B. Elsevier, Berlin, pp 995–1072. Chap 16 Google Scholar
  40. 40.
    Emerson EA, Namjoshi KS (1998) On model checking for non-deterministic infinite-state systems. In: Proc 13th IEEE symp logic in computer science (LICS 1998). IEEE Comput Soc, Los Alamitos, pp 70–80. doi: 10.1109/LICS.1998.705644 Google Scholar
  41. 41.
    Esparza J (1998) Decidability and complexity of petri net problems—an introduction. In: Lectures on Petri nets I: basic models. Lecture notes in computer science, vol 1491. Springer, Berlin, pp 374–428. doi: 10.1007/3-540-65306-6_20 CrossRefGoogle Scholar
  42. 42.
    Fenner S, Gasarch W, Postow B (2009) The complexity of finding SUBSEQ(A). Theory Comput Syst 45(3):577–612. doi: 10.1007/s00224-008-9111-4 MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Figueira D, Figueira S, Schmitz S, Schnoebelen P (2011) Ackermannian and primitive-recursive bounds with Dickson’s lemma. In: Proc 26th IEEE symp logic in computer science (LICS 2011). IEEE Comput Soc, Los Alamitos, pp 269–278. doi: 10.1109/LICS.2011.39 CrossRefGoogle Scholar
  44. 44.
    Figueira D, Segoufin L (2009) Future-looking logics on data words and trees. In: Proc 34th int symp math found comp sci (MFCS 2009). Lecture notes in computer science, vol 5734. Springer, Berlin, pp 331–343. doi: 10.1007/978-3-642-03816-7_29 CrossRefGoogle Scholar
  45. 45.
    Finkel A (1994) Decidability of the termination problem for completely specified protocols. Distrib Comput 7(3):129–135. doi: 10.1007/BF02277857 CrossRefGoogle Scholar
  46. 46.
    Finkel A, Goubault-Larrecq J (2009) Forward analysis for WSTS, part I: completions. In: Proc 26th ann symp theoretical aspects of computer science (STACS 2009). Leibniz international proceedings in informatics, vol 3. Leibniz-Zentrum für Informatik, Dagstuhl, pp 433–444. doi: 10.4230/LIPIcs.STACS.2009.1844 Google Scholar
  47. 47.
    Finkel A, McKenzie P, Picaronny C (2004) A well-structured framework for analysing Petri nets extensions. Inf Comput 195(1–2):1–29. doi: 10.1016/j.ic.2004.01.005 MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Finkel A, Schnoebelen P (2001) Well-structured transition systems everywhere! Theor Comput Sci 256(1–2):63–92. doi: 10.1016/S0304-3975(00)00102-X MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Glabbeek RJv (1993) The linear time—branching time spectrum II: the semantics of sequential systems with silent moves. In: Proc 4th int conf concurrency theory (CONCUR 1993). Lecture notes in computer science, vol 715. Springer, Berlin, pp 66–81. doi: 10.1007/3-540-57208-2_6 Google Scholar
  50. 50.
    Glabbeek RJv (2001) The linear time—branching time spectrum I. In: Bergstra JA, Ponse A, Smolka SA (eds) Handbook of process algebra. Elsevier, Amsterdam, pp 3–99. Chap 1 CrossRefGoogle Scholar
  51. 51.
    Grädel E, Thomas W, Wilke T (eds) (2002) Automata, logics, and infinite games: a guide to current research. Lecture notes in computer science, vol 2500. Springer, Berlin Google Scholar
  52. 52.
    Gruber H, Holzer M, Kutrib M (2009) More on the size of Higman-Haines sets: effective constructions. Fundam Inform 91(1):105–121. doi: 10.3233/FI-2009-0035 MathSciNetzbMATHGoogle Scholar
  53. 53.
    Habermehl P, Vojnar T (2005) Regular model checking using inference of regular languages. In: Proc 6th int workshop on verification of infinite state systems (INFINITY 2004). Electronic notes in theor comp sci, vol 138. Elsevier, Amsterdam, pp 21–36. doi: 10.1016/j.entcs.2005.01.044 Google Scholar
  54. 54.
    Haddad S, Schmitz S, Schnoebelen P (2012) The ordinal-recursive complexity of timed-arc Petri nets, data nets, and other enriched nets. In: Proc 27th IEEE symp logic in computer science (LICS 2012). IEEE Comput Soc, Los Alamitos, pp 355–364. doi: 10.1109/LICS.2012.46 Google Scholar
  55. 55.
    Henzinger TA, Majumdar R, Raskin JF (2005) A classification of symbolic transition systems. ACM Trans Comput Log 6(1):1–32. doi: 10.1145/1042038.1042039 MathSciNetCrossRefGoogle Scholar
  56. 56.
    Jančar P (1995) Undecidability of bisimilarity for petri nets and some related problems. Theor Comput Sci 148(2):281–301. doi: 10.1016/0304-3975(95)00037-W CrossRefzbMATHGoogle Scholar
  57. 57.
    Jančar P, Esparza J, Moller F (1999) Petri nets and regular processes. J Comput Syst Sci 59(3):476–503. doi: 10.1006/jcss.1999.1643 CrossRefzbMATHGoogle Scholar
  58. 58.
    Jančar P, Kučera A, Mayr R (2001) Deciding bisimulation-like equivalences with finite-state processes. Theor Comput Sci 258(1–2):409–433. doi: 10.1016/S0304-3975(00)00027-X zbMATHGoogle Scholar
  59. 59.
    Jeż A, Okhotin A (2012) Representing hyper-arithmetical sets by equations over sets of integers. Theory Comput Syst 51(2):196–228. doi: 10.1007/s00224-011-9352-5 MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    de Jongh DHJ, Parikh R (1977) Well-partial orderings and hierarchies. Indag Math 39(3):195–207. doi: 10.1016/1385-7258(77)90067-1 MathSciNetCrossRefGoogle Scholar
  61. 61.
    Kesten Y, Maler O, Marcus M, Pnueli A, Shahar E (2001) Symbolic model checking with rich assertional languages. Theor Comput Sci 256(1–2):93–112. doi: 10.1016/S0304-3975(00)00103-1 MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Khoussainov B, Nerode A (1995) Automatic presentations of structures. In: Proc int workshop logical and computational complexity (LCC 1994). Lecture notes in computer science, vol 960. Springer, Berlin, pp 367–392. doi: 10.1007/3-540-60178-3_93 CrossRefGoogle Scholar
  63. 63.
    Kouzmin EV, Shilov NV, Sokolov VA (2004) Model checking mu-calculus in well-structured transition systems. In: Proc 11th int symp temporal representation and reasoning (TIME 2004). IEEE Comput Soc, Los Alamitos, pp 152–155. doi: 10.1109/TIME.2004.1314433 Google Scholar
  64. 64.
    Kruskal JB (1972) The theory of well-quasi-ordering: a frequently discovered concept. J Comb Theory, Ser A 13(3):297–305. doi: 10.1016/0097-3165(72)90063-5 MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Kučera A, Schnoebelen P (2006) A general approach to comparing infinite-state systems with their finite-state specifications. Theor Comput Sci 358(2–3):315–333. doi: 10.1016/j.tcs.2006.01.021 zbMATHGoogle Scholar
  66. 66.
    Kunc M (2007) What do we know about language equations? In: Proc 11th int conf developments in language theory (DLT 2007). Lecture notes in computer science, vol 4588. Springer, Berlin, pp 23–27. doi: 10.1007/978-3-540-73208-2_3 CrossRefGoogle Scholar
  67. 67.
    Leroux J, Point G (2009) TaPAS: the Talence Presburger arithmetic suite. In: Proc 15th int conf tools and algorithms for the construction and analysis of systems (TACAS 2009). Lecture notes in computer science, vol 5505. Springer, Berlin, pp 182–185. doi: 10.1007/978-3-642-00768-2_18 CrossRefGoogle Scholar
  68. 68.
    Mayr R (2003) Undecidable problems in unreliable computations. Theor Comput Sci 297(1–3):337–354. doi: 10.1016/S0304-3975(02)00646-1 MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    Milner EC (1985) Basic WQO- and BQO-theory. In: Rival I (ed) Graphs and order. The role of graphs in the theory of ordered sets and its applications. Reidel, Dordrecht, pp 487–502 Google Scholar
  70. 70.
    Perrin D (1990) Finite automata. In: van Leeuwen J (ed) Handbook of theoretical computer science, vol. B. Elsevier, Amsterdam, pp 1–57. Chap 1 Google Scholar
  71. 71.
    Rabinovich A (2006) Quantitative analysis of probabilistic lossy channel systems. Inf Comput 204(5):713–740. doi: 10.1016/j.ic.2005.11.004 MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Raskin JF, Samuelides M, Van Begin L (2003) Petri games are monotonic but difficult to decide. Tech. report 2003.21, Centre Fédéré en Vérification. Available at http://www.ulb.ac.be/di/ssd/cfv/TechReps
  73. 73.
    Raskin JF, Samuelides M, Van Begin L (2005) Games for counting abstractions. In: Proc 4th int workshop on automated verification of critical systems (AVoCS 2004). Electronic notes in theor comp sci, vol 128. Elsevier, Amsterdam, pp 69–85. doi: 10.1016/j.entcs.2005.04.005 Google Scholar
  74. 74.
    Schmitz S, Schnoebelen P (2011) Multiply-recursive upper bounds with Higman’s lemma. In: Proc 38th int coll automata, languages, and programming (ICALP 2011). Lecture notes in computer science, vol 6756. Springer, Berlin, pp 441–452. doi: 10.1007/978-3-642-22012-8_35 CrossRefGoogle Scholar
  75. 75.
    Schnoebelen P (2001) Bisimulation and other undecidable equivalences for lossy channel systems. In: Proc 4th int symp theoretical aspects of computer software (TACS 2001). Lecture notes in computer science, vol 2215. Springer, Berlin, pp 385–399. doi: 10.1007/3-540-45500-0_19 CrossRefGoogle Scholar
  76. 76.
    Schnoebelen P (2004) The verification of probabilistic lossy channel systems. In: Validation of stochastic systems—a guide to current research. Lecture notes in computer science, vol 2925. Springer, Berlin, pp 445–465. doi: 10.1007/978-3-540-24611-4_13 CrossRefGoogle Scholar
  77. 77.
    Schnoebelen P (2010) Lossy counter machines decidability cheat sheet. In: Proc 4th int workshop reachability problems (RP 2010). Lecture notes in computer science, vol 6227. Springer, Berlin, pp 51–75. doi: 10.1007/978-3-642-15349-5_4 CrossRefGoogle Scholar
  78. 78.
    Schnoebelen P (2010) Revisiting Ackermann-hardness for lossy counter machines and reset Petri nets. In: Proc 35th int symp mathematical foundations of computer science (MFCS 2010). Lecture notes in computer science, vol 6281. Springer, Berlin, pp 616–628. doi: 10.1007/978-3-642-15155-2_54 CrossRefGoogle Scholar
  79. 79.
    Valk R (1978) Self-modifying nets, a natural extension of Petri nets. In: Proc 5th coll automata, languages, and programming (ICALP 1978). Lecture notes in computer science, vol 62. Springer, Berlin, pp 464–476. doi: 10.1007/3-540-08860-1_35 CrossRefGoogle Scholar
  80. 80.
    van Leeuwen J (1978) Effective constructions in well-partially-ordered free monoids. Discrete Math 21(3):237–252. doi: 10.1016/0012-365X(78)90156-5 MathSciNetCrossRefGoogle Scholar
  81. 81.
    Wolper P, Boigelot B (1998) Verifying systems with infinite but regular state spaces. In: Proc 10th int conf computer aided verification (CAV 1998). Lecture notes in computer science, vol 1427. Springer, Berlin, pp 88–97. doi: 10.1007/BFb0028736 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Inria Rennes Bretagne AtlantiqueRennes CedexFrance
  2. 2.LSV, CNRS & ENS de CachanCachan CedexFrance

Personalised recommendations