Formal Methods in System Design

, Volume 34, Issue 2, pp 104–125

Local proofs for global safety properties

Article

Abstract

This paper explores locality in proofs of global safety properties of concurrent programs. Model checking on the full state space is often infeasible due to state explosion. A local proof, in contrast, is a collection of per-process invariants, which together imply the desired global safety property. Local proofs can be more compact than global proofs, but local reasoning is also inherently incomplete. In this paper, we present an algorithm for safety verification that combines local reasoning with gradual refinement. The algorithm gradually exposes facts about the internal state of components, until either a local proof or a real error is discovered. The refinement mechanism ensures completeness. Experiments show that local reasoning can have significantly better performance over the traditional reachability computation. Moreover, for some parameterized protocols, a local proof can be used as the basis of a correctness proof over all instances.

Keywords

Model checking Local reasoning Compositionality Local proofs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balaban I, Fang Y, Pnueli A, Zuck LD (2005) IIV: An invisible invariant verifier. In: CAV. LNCS, vol 3576. Springer, Berlin, pp 408–412 Google Scholar
  2. 2.
    Chaki S, Clarke EM, Sinha N, Thati P (2005) Automated assume-guarantee reasoning for simulation conformance. In: CAV. LNCS, vol 3576. Springer, Berlin, pp 534–547 Google Scholar
  3. 3.
    Chandy KM, Misra J (1981) Proofs of networks of processes. IEEE Trans Softw Eng 7(4):417–426 CrossRefMathSciNetGoogle Scholar
  4. 4.
    Clarke EM, Grumberg O (1987) Avoiding the state explosion problem in temporal logic model checking. In: PODC, pp 294–303 Google Scholar
  5. 5.
    Clarke EM, Grumberg O, Jha S, Lu Y, Veith H (2003) Counterexample-guided abstraction refinement for symbolic model checking. J Assoc Comput Mach 50(5):752–794 MathSciNetGoogle Scholar
  6. 6.
    Clarke EM, Emerson EA (1981) Design and synthesis of synchronization skeletons using branching time temporal logic. In: Workshop on logics of programs. LNCS, vol 131. Springer, Berlin Google Scholar
  7. 7.
    Cobleigh JM, Avrunin GS, Clarke LA (2006) Breaking up is hard to do: an investigation of decomposition for assume-guarantee reasoning. In: ISSTA, pp 97–108 Google Scholar
  8. 8.
    Cohen A, Namjoshi KS (2008) Local proofs for linear-time properties of concurrent programs. In: CAV (to appear) Google Scholar
  9. 9.
    Cousot P, Cousot R (1984) Invariance proof methods and analysis techniques for parallel programs. In: Biermann AW, Guiho G, Kadratoff Y (eds) Automatic program construction techniques. Macmillan, New York, pp 243–271, chap 12 Google Scholar
  10. 10.
    de Roever W-P, de Boer F, Hannemann U, Hooman J, Lakhnech Y, Poel M, Zwiers J (2001) Concurrency verification: introduction to compositional and noncompositional proof methods. Cambridge University Press, Cambridge MATHGoogle Scholar
  11. 11.
    Dijkstra EW (1976) A discipline of programming. Prentice Hall, New York MATHGoogle Scholar
  12. 12.
    Dijkstra EW (1976) EWD 554: A Personal Summary of the Gries-Owicki Theory. Available at http://www.cs.utexas.edu/users/EWD
  13. 13.
    Dijkstra EW, Scholten CS (1990) Predicate calculus and program semantics. Springer, Berlin MATHGoogle Scholar
  14. 14.
    Flanagan C, Freund SN, Qadeer S, Seshia SA (2005) Modular verification of multithreaded programs. Theor Comput Sci 338(1–3):153–183 MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Flanagan C, Qadeer S (2003) Thread-modular model checking. In: SPIN. LNCS, vol 2648. Springer, Berlin, pp 213–224 Google Scholar
  16. 16.
    Giannakopoulou D, Pasareanu CS (2005) Learning-based assume-guarantee verification (tool paper). In: SPIN. LNCS, vol 3639. Springer, Berlin, pp 282–287 Google Scholar
  17. 17.
    Giannakopoulou D, Pasareanu CS, Barringer H (2002) Assumption generation for software component verification. In: ASE, pp 3–12 Google Scholar
  18. 18.
    Henzinger TA, Jhala R, Majumdar R (2004) Race checking by context inference. In: PLDI, pp 1–13 Google Scholar
  19. 19.
    Henzinger TA, Jhala R, Majumdar R, Qadeer S (2003) Thread-modular abstraction refinement. In: CAV. LNCS, vol 2725. Springer, Berlin, pp 262–274 Google Scholar
  20. 20.
    Hu AJ, Dill DL (1993) Efficient verification with bdds using implicitly conjoined invariants. In: CAV. LNCS, vol 697. Springer, Berlin, pp 3–14 Google Scholar
  21. 21.
    Jhala R, McMillan KL (2001) Microarchitecture verification by compositional model checking. In: CAV. LNCS, vol 2102. Springer, Berlin, pp 396–410 Google Scholar
  22. 22.
    Jones CB (1981) Development methods for computer programs including a notion of interference. PhD thesis, Oxford University Google Scholar
  23. 23.
    Lamport L (1977) Proving the correctness of multiprocess programs. IEEE Trans Softw Eng 3(2):125–143 CrossRefMathSciNetGoogle Scholar
  24. 24.
    Malkis A, Podelski A, Rybalchenko A (2007) Precise thread-modular verification. In: SAS, pp 218–232 Google Scholar
  25. 25.
    McMillan KL (1997) A compositional rule for hardware design refinement. In: CAV. LNCS, vol 1254. Springer, Berlin Google Scholar
  26. 26.
    Namjoshi KS (2007) Symmetry and completeness in the analysis of parameterized systems. In: VMCAI. LNCS, vol 4349. Springer, Berlin Google Scholar
  27. 27.
    Owicki SS, Gries D (1976) Verifying properties of parallel programs: An axiomatic approach. Commun Assoc Comput Mach 19(5):279–285 MATHMathSciNetGoogle Scholar
  28. 28.
    Pnueli A (1985) In transition from global to modular reasoning about programs. In: Logics and models of concurrent systems. NATO ASI series Google Scholar
  29. 29.
    Pnueli A, Ruah S, Zuck LD (2001) Automatic deductive verification with invisible invariants. In: TACAS. LNCS, vol 2031. Springer, Berlin, pp 82–97 Google Scholar
  30. 30.
    Pnueli A, Shahar E (1996) A platform for combining deductive with algorithmic verification. In: CAV. LNCS, vol 1102. Springer, Berlin, pp 184–195. Web: www.cs.nyu.edu/acsys/tlv Google Scholar
  31. 31.
    Queille JP, Sifakis J (1982) Specification and verification of concurrent systems in CESAR. In: Proc of the 5th international symposium on programming. LNCS, vol 137. Springer, Berlin Google Scholar
  32. 32.
    Shoham S, Grumberg O (2007) Compositional verification and 3-valued abstractions join forces. In: SAS, pp 69–86 Google Scholar
  33. 33.
    Tkachuk O, Dwyer MB, Pasareanu CS (2003) Automated environment generation for software model checking. In: ASE, pp 116–129 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.New York UniversityCourant InstituteNew YorkUSA
  2. 2.Bell LabsMurray HillUSA

Personalised recommendations