Formal Methods in System Design

, Volume 34, Issue 2, pp 157–182 | Cite as

Hybrid systems: from verification to falsification by combining motion planning and discrete search

Article

Abstract

We propose HyDICE, Hybrid Discrete Continuous Exploration, a multi-layered approach for hybrid-system falsification that combines motion planning with discrete search and discovers safety violations by computing witness trajectories to unsafe states. The discrete search uses discrete transitions and a state-space decomposition to guide the motion planner during the search for witness trajectories. Experiments on a nonlinear hybrid robotic system with over one million modes and experiments with an aircraft conflict-resolution protocol with high-dimensional continuous state spaces demonstrate the effectiveness of HyDICE. Comparisons to related work show computational speedups of up to two orders of magnitude.

Keywords

Hybrid system Safety properties Robot motion planning Discrete search Sampling-based planning Decomposition Nonlinear dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur R, Courcoubetis C, Halbwachs N, Henzinger TA, Ho PH, Nicollin X, Olivero A, Sifakis J, Yovine S (1995) The algorithmic analysis of hybrid systems. Theor Comput Sci 138(1):3–34 MATHCrossRefGoogle Scholar
  2. 2.
    Alur R, Henzinger TA, Lafferriere G, Pappas G (2000) Discrete abstractions of hybrid systems. Proc IEEE 88(7):971–984 CrossRefGoogle Scholar
  3. 3.
    Alur R, Dang T, Ivančić F (2006) Counterexample-guided predicate abstraction of hybrid systems. Theor Comput Sci 354(2):250–271 MATHCrossRefGoogle Scholar
  4. 4.
    Asarin E, Dang T, Maler O (2002) The d/dt tool for verification of hybrid systems. In: Int conf on computer aided verification. LNCS. Springer, Berlin, pp 365–370 CrossRefGoogle Scholar
  5. 5.
    Behrmann G, David A, Larsen KG, Möller O, Pettersson P, Yi W (2001) Uppaal—present and future. In: IEEE conf on decision and control, vol 3, pp 2881–2886 Google Scholar
  6. 6.
    Belta C, Esposito J, Kim J, Kumar V (2005) Computational techniques for analysis of genetic network dynamics. Int J Robot Res 24(2–3):219–235 CrossRefGoogle Scholar
  7. 7.
    Bhatia A, Frazzoli E (2004) Incremental search methods for reachability analysis of continuous and hybrid systems. In: Hybrid systems: Computation and control. LNCS, vol 2993. Springer, Berlin, pp 142–156 Google Scholar
  8. 8.
    Botchkarev O, Tripakis S (2000) Verification of hybrid systems with linear differential inclusions using ellipsoidal approximations. In: Hybrid systems: Computation and control. LNCS, vol 1790. Springer, Berlin, pp 73–88 CrossRefGoogle Scholar
  9. 9.
    Branicky MS, Curtiss MM, Levine J, Morgan S (2006) Sampling-based planning, control, and verification of hybrid systems. Control Theory Appl 153(5):575–590 CrossRefGoogle Scholar
  10. 10.
    Burch J, Clarke E, McMillan K, Dill D, Hwang L (1992) Symbolic model checking: 1020 states and beyond. Inf Comput 98(2):142–170 MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Choset H, Lynch KM, Hutchinson S, Kantor G, Burgard W, Kavraki LE, Thrun S (2005) Principles of robot motion: Theory, algorithms, and implementations. MIT Press, Cambridge MATHGoogle Scholar
  12. 12.
    Chutinan C, Krogh BH (2003) Computational techniques for hybrid system verification. IEEE Trans Autom Control 48(1):64–75 CrossRefMathSciNetGoogle Scholar
  13. 13.
    Clarke EM, Bierea A, Raimi R, Zhu Y (2001) Bounded model checking using satisfiability solving. Formal Methods Syst Des 19(1):7–34 MATHCrossRefGoogle Scholar
  14. 14.
    Clarke EM, Grumberg O, Peled DA (2001) Model checking. MIT Press, Cambridge Google Scholar
  15. 15.
    Copty F, Fix L, Fraer R, Giunchiglia E, Kamhi G, Tacchella A, Vardi M (2001) Benefits of bounded model checking at an industrial setting. In: Int conf on computer aided verification. LNCS, vol 2102. Springer, Berlin, pp 436–453 Google Scholar
  16. 16.
    de Berg M, van Kreveld M, Overmars MH (1997) Computational geometry: Algorithms and applications. Springer, Berlin MATHGoogle Scholar
  17. 17.
    Edelkamp S, Jabbar S (2006) Large-scale directed model checking LTL. In: Int SPIN work on model checking software. LNCS, vol 3925. Springer, Berlin, pp 1–18 CrossRefGoogle Scholar
  18. 18.
    Esposito J, Kumar V, Pappas G (2001) Accurate event detection for simulation of hybrid systems. In: Hybrid systems: Computation and control. LNCS. Springer, Berlin, pp 204–217 CrossRefGoogle Scholar
  19. 19.
    Esposito JM, Kim J, Kumar V (2004) Adaptive RRTs for validating hybrid robotic control systems. In: Workshop on algorithmic foundations of robotics. Zeist, Netherlands, pp 107–132 Google Scholar
  20. 20.
    Fehnker A, Ivancic F (2004) Benchmarks for hybrid systems verification. In: Hybrid systems: Computation and control. LNCS, vol 2993. Springer, Berlin, pp 326–341 Google Scholar
  21. 21.
    Galassi M, Davies J, Theiler J, Gough B, Jungman G, Booth M, Rossi F (2006) GNU scientific library reference manual, 2 edn. Network Theory Ltd Google Scholar
  22. 22.
    George PL, Borouchaki H (1998) Delaunay triangulation and meshing: Application to finite elements. Hermes Science Publications Google Scholar
  23. 23.
    Giorgetti N, Pappas GJ, Bemporad A (2005) Bounded model checking for hybrid dynamical systems. In: IEEE conf on decision and control. Seville, Spain, pp 672–677 Google Scholar
  24. 24.
    Glover W, Lygeros J (2004) A stochastic hybrid model for air traffic control simulation. In: Hybrid systems: Computation and control. LNCS, vol 2993. Springer, Berlin, pp 372–386 Google Scholar
  25. 25.
    Henzinger T (1996) The theory of hybrid automata. In: Symp on logic in computer science, pp 278–292 Google Scholar
  26. 26.
    Henzinger T, Kopke P, Puri A, Varaiya P (1995) What’s decidable about hybrid automata? In: ACM symp on theory of computing, pp 373–382 Google Scholar
  27. 27.
    Henzinger TA, Ho PH, Wong-Toi H (1997) HyTech: A model checker for hybrid systems. Softw Tools Technol Transfer 1:110–122 MATHCrossRefGoogle Scholar
  28. 28.
    Hsu D, Kindel R, Latombe, JC, Rock S (2002) Randomized kinodynamic motion planning with moving obstacles. Int J Robot Res 21(3):233–255 CrossRefGoogle Scholar
  29. 29.
    Johansson R, Rantzer A (2002) Nonlinear and hybrid, systems in automotive, control. Springer, New York Google Scholar
  30. 30.
    Julius AA, Fainekos GE, Anand M, Lee I, Pappas GJ (2007) Robust test generation and coverage for hybrid systems. In: Hybrid systems: Computation and control. LNCS, vol 4416. Springer, Berlin, pp 329–342 CrossRefGoogle Scholar
  31. 31.
    Kavraki LE, Švestka P, Latombe JC, Overmars MH (1996) Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans Robot Autom 12(4):566–580 CrossRefGoogle Scholar
  32. 32.
    Kim J, Esposito JM, Kumar V (2005) An RRT-based algorithm for testing and validating multi-robot controllers. In: Robotics: Science and systems. Boston, MA, pp 249–256 Google Scholar
  33. 33.
    Kruskal JB (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. Proc Am Math Soc 7(1):48–50 CrossRefMathSciNetGoogle Scholar
  34. 34.
    Ladd AM (2006) Motion planning for physical simulation. PhD thesis, Rice University, Houston, TX Google Scholar
  35. 35.
    Ladd AM, Kavraki LE (2005) Motion planning in the presence of drift, underactuation and discrete system changes. In: Robotics: Science and systems. Boston, MA, pp 233–241 Google Scholar
  36. 36.
    Lafferriere G, Pappas G, Yovine S (1999) A new class of decidable hybrid systems. In: Hybrid systems: Computation and control. LNCS, vol 1569. Springer, Berlin, pp 137–151 CrossRefGoogle Scholar
  37. 37.
    LaValle SM (2006) Planning algorithms. Cambridge University Press, Cambridge MATHGoogle Scholar
  38. 38.
    LaValle SM, Kuffner JJ (2001) Rapidly-exploring random trees: Progress and prospects. In: Workshop on algorithmic foundations of robotics, pp 293–308 Google Scholar
  39. 39.
    Livadas C, Lynch N (1998) Formal verification of safety-critical hybrid systems. In: Hybrid systems: Computation and control. LNCS, vol 1386. Springer, Berlin, pp 253–272 Google Scholar
  40. 40.
    Mitchell IM (2007) Comparing forward and backward reachability as tools for safety analysis. In: Hybrid systems: Computation and control. LNCS, vol 4416. Springer, Berlin, pp 428–443 CrossRefGoogle Scholar
  41. 41.
    Nahhal T, Dang T (2007) Test coverage for continuous and hybrid systems. In: Int conf on computer aided verification. LNCS, vol 4590. Springer, Berlin, pp 449–462 CrossRefGoogle Scholar
  42. 42.
    Pepyne D, Cassandras C (2000) Optimal control of hybrid systems in manufacturing. Proc IEEE 88(7):1108–1123 CrossRefGoogle Scholar
  43. 43.
    Piazza C, Antoniotti M, Mysore V, Policriti A, Winkler F, Mishra B (2005) (2005) Algorithmic algebraic model checking I: Challenges from systems biology. In: Int conf computer aided verification. LNCS, vol 3576. Springer, Berlin, pp 5–19 Google Scholar
  44. 44.
    Plaku E, Bekris KE, Chen BY, Ladd AM, Kavraki LE (2005) Sampling-based roadmap of trees for parallel motion planning. IEEE Trans Robot 21(4):597–608 CrossRefGoogle Scholar
  45. 45.
    Plaku E, Kavraki LE, Vardi MY (2007) Discrete search leading continuous exploration for kinodynamic motion planning. In: Robotics: Science and systems. Atlanta, Georgia Google Scholar
  46. 46.
    Plaku E, Kavraki LE, Vardi MY (2007) Hybrid systems: From verification to falsification. In: Int conf on computer aided verification. LNCS, vol 4590. Springer, Berlin, pp 468–481 CrossRefGoogle Scholar
  47. 47.
    Plaku E, Kavraki LE, Vardi MY (2007) A motion planner for a hybrid robotic system with kinodynamic constraints. In: IEEE int conf on robotics and automation. Rome, Italy, pp 692–697 Google Scholar
  48. 48.
    Puri A (1995) Theory of hybrid systems and discrete event systems. PhD thesis, University of California, Berkeley Google Scholar
  49. 49.
    Ratschan S, She Z (2007) Safety verification of hybrid systems by constraint propagation-based abstraction refinement. ACM Trans Embed Comput Syst 6(1):8 CrossRefGoogle Scholar
  50. 50.
    Sánchez G, Latombe JC (2002) On delaying collision checking in PRM planning: Application to multi-robot coordination. Int J Robot Res 21(1):5–26 CrossRefGoogle Scholar
  51. 51.
    Silva BI, Krogh BH (2000) Formal verification of hybrid systems using CheckMate: A case study. In: American control conference, pp 1679–1683 Google Scholar
  52. 52.
    Stursberg O, Krogh BH (2003) Efficient representation and computation of reachable sets for hybrid systems. In: Hybrid systems: Computation and control. LNCS, vol 2623. Springer, Berlin, pp 482–497 CrossRefGoogle Scholar
  53. 53.
    Tomlin CJ, Pappas GJ, Sastry SS (1998) Conflict resolution for air traffic management: A case study in multi-agent hybrid systems. IEEE Trans Autom Control 43(4):509–521 MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Tomlin CJ, Mitchell I, Bayen A, Oishi M (2003) Computational techniques for the verification and control of hybrid systems. Proc IEEE 91(7):986–1001 CrossRefGoogle Scholar
  55. 55.
    Yovine S (1997) Kronos: A verification tool for real-time systems. Int J Softw Tools Technol Transf 1:123–133 MATHCrossRefGoogle Scholar
  56. 56.
    Zhang W (2006) State-space search: Algorithms, complexity, extensions, and applications. Springer, New York Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Erion Plaku
    • 1
  • Lydia E. Kavraki
    • 1
  • Moshe Y. Vardi
    • 1
  1. 1.Department of Computer ScienceRice UniversityHoustonUSA

Personalised recommendations