Formal Methods in System Design

, Volume 32, Issue 1, pp 3–23 | Cite as

Optimal infinite scheduling for multi-priced timed automata

Article

Abstract

This paper is concerned with the derivation of infinite schedules for timed automata that are in some sense optimal. To cover a wide class of optimality criteria we start out by introducing an extension of the (priced) timed automata model that includes both costs and rewards as separate modelling features. A precise definition is then given of what constitutes optimal infinite behaviours for this class of models. We subsequently show that the derivation of optimal non-terminating schedules for such double-priced timed automata is computable. This is done by a reduction of the problem to the determination of optimal mean-cycles in finite graphs with weighted edges. This reduction is obtained by introducing the so-called corner-point abstraction, a powerful abstraction technique of which we show that it preserves optimal schedules.

Keywords

Priced timed automata Optimal mean-payoff 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdeddaïm Y, Maler O (2001) Job-shop scheduling using timed automata. In: Procedings of 13th international conference on computer aided verification (CAV’01). Lecture notes in computer science, vol 2102. Springer, Berlin, pp 478–492 Google Scholar
  2. 2.
    Abdeddaïm Y, Maler O (2002) Preemptive job-shop scheduling using stopwatch automata. In: Proceedings of 8th international conference on tools and algorithms for the construction and analysis of systems (TACAS’02). Lecture notes in computer science, vol 2280. Springer, Berlin, pp 113–126 CrossRefGoogle Scholar
  3. 3.
    Alur R, Dill D (1990) Automata for modeling real-time systems. In: Proceedings of 17th international colloquium on automata, languages and programming (ICALP’90). Lecture notes in computer science, vol 443. Springer, Berlin, pp 322–335 CrossRefGoogle Scholar
  4. 4.
    Alur R, Dill D (1994) A theory of timed automata. Theor Comput Sci 126(2):183–235 MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Alur R, Bernadsky M, Madhusudan P (2004) Optimal reachability in weighted timed games. In: Proceedings of 31st international colloquium on automata, languages and programming (ICALP’04). Lecture notes in computer science, vol 3142. Springer, Berlin, pp 122–133 Google Scholar
  6. 6.
    Alur R, La Torre S, Pappas GJ (2001) Optimal paths in weighted timed automata. In: Proceedings of 4th international workshop on hybrid systems: computation and control (HSCC’01). Lecture notes in computer science, vol 2034. Springer, Berlin, pp 49–62 CrossRefGoogle Scholar
  7. 7.
    Applegate D, Cook W (1991) A computational study of the job-shop scheduling problem. OSRA J Comput 3:149–156 MATHGoogle Scholar
  8. 8.
    Asarin E, Maler O (1999) As soon as possible: Time optimal control for timed automata. In: Proceedings of 2nd international workshop on hybrid systems: computation and control (HSCC’99). Lecture notes in computer science, vol 1569. Springer, Berlin, pp 19–30 CrossRefGoogle Scholar
  9. 9.
    Behrmann G, Fehnker A, Hune Th, Larsen KG, Pettersson P, Romijn J, Vaandrager F (2001) Efficient guiding towards cost-optimality in \(\mathsf{uppaal}\) . In: Proceedings of 7th international conference on tools and algorithms for the construction and analysis of systems (TACAS’01). Lecture notes in computer science, vol 2031. Springer, Berlin, pp 174–188 CrossRefGoogle Scholar
  10. 10.
    Behrmann G, Fehnker A, Hune Th, Larsen KG, Pettersson P, Romijn J, Vaandrager F (2001) Minimum-cost reachability for priced timed automata. In: Proceedings of 4th international workshop on hybrid systems: computation and control (HSCC’01). Lecture notes in computer science, vol 2034. Springer, Berlin, pp 147–161 CrossRefGoogle Scholar
  11. 11.
    Bengtsson J, Larsen KG, Larsson F, Pettersson P, Yi W, Weise C (1998) New generation of \(\mathsf{uppaal}\) . In: Proceedings of international workshop on software tools for technology transfer (STTT’98). BRICS notes series, pp 43–52 Google Scholar
  12. 12.
    Bouyer P, Brinksma E, Larsen KG (2004) Staying alive as cheaply as possible. In: Proceedings of 7th international workshop on hybrid systems: computation and control (HSCC’04). Lecture notes in computer science, vol 2993. Springer, Berlin, pp 203–218 Google Scholar
  13. 13.
    Bouyer P, Cassez F, Fleury E, Larsen KG (2004) Optimal strategies in priced timed game automata. In: Proceedings of 24th conference on foundations of software technology and theoretical computer science (FST&TCS’04). Lecture notes in computer science, vol 3328. Springer, Berlin, pp 148–160 Google Scholar
  14. 14.
    Brinksma E, Mader A, Fehnker A (2002) Verification and optimization of a PLC control schedule. J Softw Tools Technol Trans 4(1):21–33 CrossRefGoogle Scholar
  15. 15.
    D’Argenio PR, Jeannet B, Jensen HE, Larsen KG (2001) Reachability analysis of probabilistic systems by successive refinements. In: Proceedings of 1st joint international workshop on process algebra and probabilistic methods, performance modeling and verification (PAPM-PROBMIV’01). Lecture notes in computer science, vol 2165. Springer, Berlin, pp 39–56 CrossRefGoogle Scholar
  16. 16.
    D’Argenio PR, Jeannet B, Jensen HE, Larsen KG (2002) Reduction and refinement strategies for probabilistic analysis. In: Proceedings of 2nd joint international workshop on process algebra and probabilistic methods, performance modeling and verification (PAPM-PROBMIV’02). Lecture notes in computer science, vol 2399. Springer, Berlin, pp 57–76 CrossRefGoogle Scholar
  17. 17.
    Dasdan A, Gupta RK (1998) Faster maximum and minimum mean cycle algorithms for system performance analysis. IEEE Trans Comput Aided Des Integr Circuits Syst 17(10):889–899 CrossRefGoogle Scholar
  18. 18.
    Dasdan A, Irani S, Gupta RK (1999) Efficient algorithms for optimum cycle mean and optimum cost to time ratio problems. In: Proceedings of 36th ACM/IEEE design automation conference (DAC’99). ACM, New York, pp 37–42 CrossRefGoogle Scholar
  19. 19.
    Fehnker A (1999) Scheduling a steel plant with timed automata. In: Proceedings of 6th international conference on real-time computing systems and applications (RTCSA’99). IEEE Computer Society, Los Alamitos, pp 280–286 Google Scholar
  20. 20.
    Hune Th, Larsen KG, Pettersson P (2000) Guided synthesis of control programs using \(\mathsf{uppaal}\) . In: Proceedings of IEEE ICDS international workshop on distributes systems verification and validation. IEEE Computer Society, Los Alamitos, pp E15–E22 Google Scholar
  21. 21.
    Karp RM (1978) A characterization of the minimum mean-cycle in a digraph. Discrete Math 23(3):309–311 MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    La Torre S, Mukhopadhyay S, Murano A (2002) Optimal-reachability and control for acyclic weighted timed automata. In: Proceedings of 2nd IFIP international conference on theoretical computer science (TCS 2002). IFIP conference proceedings, vol 223. Kluwer Academic, Dordrecht, pp 485–497 Google Scholar
  23. 23.
    Larsen KG, Pettersson P, Yi W (1997) UPPAAL in a nutshell. J Softw Tools Technol Transf 1(1–2):134–152 MATHCrossRefGoogle Scholar
  24. 24.
    Larsen KG, Behrmann G, Brinksma E, Fehnker A, Hune T, Pettersson P, Romijn J (2001) As cheap as possible: efficient cost-optimal reachability for priced timed automata. In: Proceedings of 13th international conference on computer aided verification (CAV’01). Lecture notes in computer science, vol 2102. Springer, Berlin, pp 493–505 Google Scholar
  25. 25.
    Mader A (2004) Deriving schedules for a smart card personalisation system. Technical report TR-CTIT-04-05, Centre for Telematics and Information Technology, University of Twente, The Netherlands Google Scholar
  26. 26.
    Niebert P, Yovine S (2001) Computing efficient operations schemes for chemical plants in multi-batch mode. Eur J Control 7(4):440–453 CrossRefGoogle Scholar
  27. 27.
    Papadimitriou CH (1994) Computational complexity. Addison-Wesley, Reading MATHGoogle Scholar
  28. 28.
    Zwick U, Paterson M (1996) The complexity of mean payoff games on graphs. Theor Comput Sci 158 (1–2):343–359 MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.LSVCNRS & ENS de CachanCachan CedexFrance
  2. 2.Department of Computer ScienceUniversity of TwenteEnschedeThe Netherlands
  3. 3.BRICSAalborg UniversityAalborgDenmark

Personalised recommendations