Formal Methods in System Design

, Volume 30, Issue 3, pp 179–198 | Cite as

HySAT: An efficient proof engine for bounded model checking of hybrid systems

Article

Abstract

In this paper we present HySAT, a bounded model checker for linear hybrid systems, incorporating a tight integration of a DPLL–based pseudo–Boolean SAT solver and a linear programming routine as core engine. In contrast to related tools like MathSAT, ICS, or CVC, our tool exploits the various optimizations that arise naturally in the bounded model checking context, e.g.isomorphic replication of learned conflict clauses or tailored decision strategies, and extends them to the hybrid domain. We demonstrate that those optimizations are crucial to the performance of the tool.

Keywords

Verification Bounded model checking Hybrid systems Infinite-state systems Decision procedures Satisfiability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aloul FA, Ramani A, Markov IL, Sakallah KA (2002) Generic ILP versus specialized 0–1 ILP: An update. In: Proceedings of the ACM/IEEE International Conference Computer-Aided Design (ICCAD), pp 450–457Google Scholar
  2. 2.
    Audemard G, Bertoli P, Cimatti A, Kornilowics A, Sebastiani R (2002) A SAT-based approach for solving formulas over boolean and linear mathematical propositions. In: Voronkov A (ed) Proceedings of the 18th International Conference on Automated Deduction, vol 2392. Lecture Notes in Artificial Intelligence. Springer-Verlag, pp 193–208Google Scholar
  3. 3.
    Audemard G, Bozzano M, Cimatti A, Sebastiani R (2004) Verifying industrial hybrid systems with MathSAT. ENTCS 89(4)Google Scholar
  4. 4.
    Baptista L, Lynce I, Marques-Silva J (2001) Complete search restart strategies for satisfiability. In: Proceedings of the IJCAI′01 workshop on stochastic search algorithms (IJCAI-SSA)Google Scholar
  5. 5.
    Barrett C, Dill D, Stump A (2002) Checking satisfiability of first-order formulas by incremental translation to SAT. In: Proceedings of the 14th international conference on computer-aided verificationGoogle Scholar
  6. 6.
    Barth P (1995) A Davis-Putnam based enumeration algorithm for linear pseudo-boolean optimization. Technical Report MPI-I-95-2-003, Max-Planck-Institut für Informatik, Saarbrücken, GermanyGoogle Scholar
  7. 7.
    Bemporad A, Morari M (1999) Verification of hybrid systems via mathematical programming. In: Vaandrager FW, van Schuppen JH (eds) Hybrid systems: Computation and control (HSCC′99), vol 1569. Lecture Notes in Computer Science, Springer-Verlag, pp 31–45Google Scholar
  8. 8.
    Biere A, Cimatti A, Zhu Y (1999) Symbolic model checking without BDDs. In: TACAS′99, vol 1579. Lecture Notes in Computer Science, Springer-VerlagGoogle Scholar
  9. 9.
    Bik A, Wijshoff H (1994) Implementation of Fourier-Motzkin elimination. Technical Report TR94-42, Dpt. of Computer Sceince, University of Leiden, The NetherlandsGoogle Scholar
  10. 10.
    Chai D, Kuehlmann A (2003) A fast pseudo-boolean constraint solver. In: Proceedings of the 40th Design Automation Conference (DAC 2003). ACM, Anaheim, California, USA, pp 830–835CrossRefGoogle Scholar
  11. 11.
    Chinneck JW (1997) Finding a useful subset of constraints for analysis in an infeasible linear program. INFORMS J Comput 9(2):164–174MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Chinneck JW, Dravnieks EW (1991) Locating minimal infeasible constraint sets in linear programs. ORSA J Comput 3(2):157–168MATHGoogle Scholar
  13. 13.
    Davis M, Logemann G, Loveland D (1962) A machine program for theorem proving. Commun ACM 5:394–397MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    de Moura L, Owre S, Ruess H, Rushby J, Shankar N (2004) The ICS decision procedures for embedded deduction. In: Proceedings of the 2nd International Joint Conference on Automated Reasoning (IJCAR), vol 3097. Lecture Notes in Computer Science. Springer-Verlag, Cork, Ireland, pp 218–222Google Scholar
  15. 15.
    de Moura L, Owre S, Rueß H, Rushby J, Shankar N, Sorea M, Tiwari A (2004) SAL 2. In: Alur R, Peled D (eds) Computer-aided verification, CAV 2004, vol 3114. Lecture Notes in Computer Science. Springer-Verlag, Boston, MA, pp 496–500Google Scholar
  16. 16.
    de Moura L, Rueß H, Sorea M (2002) Lazy theorem proving for bounded model checking over infinite domains. In: Proceedings of the 18th international conference on automated deduction, vol 2392. Lecture Notes in Computer Science. Springer-Verlag, pp 438–455Google Scholar
  17. 17.
    Enslev J, Nielsen A-S, Fränzle M, Hansen MR (2005) Bounded model construction for duration calculus. In: Jones N, et al (eds) Proceedings of the 17th Nordic Workshop on Programming Theory (NWPT 05). Københavns UniversitetGoogle Scholar
  18. 18.
    Fourier J (1826) Solution dùne qestion particulière du calcul des inégalités. Nouveau Bulletin par la Société Philomathique des Paris pp 99–100Google Scholar
  19. 19.
    Fränzle M, Herde C (2003) Efficient SAT engines for concise logics: Accelerating proof search for zero-one linear constraint systems. In: Vardi M, Voronkov A (eds) Logic for programming, artificial intelligence, and reasoning (LPAR 2003), vol 2850. Lecture Notes in Artificial Intelligence, Springer-VerlagGoogle Scholar
  20. 20.
    Fränzle M, Herde C (2003) Efficient SAT engines for concise logics: Accelerating proof search for zero-one linear constraint systems. In: Moshe AV, Vardi Y (eds) Logic for programming, artificial intelligence and reasoning (LPAR 2003), vol 2850. LNCS, subseries LNAI, Springer Verlag, pp 302–316Google Scholar
  21. 21.
    Gleeson J, Ryan J (1990) Identifying minimally infeasible subsystems of inequalities. ORSA J Comput 2(1):61–63MATHGoogle Scholar
  22. 22.
    Groote JF, Koorn JWC, van Vlijmen SFM (1995) The safety guaranteeing system at station hoorn-kersenboogerd. In: Compass ′95: 10th annual conference on computer assurance. National Institute of Standards and Technology, Gaithersburg, Maryland, pp 57–68Google Scholar
  23. 23.
    Hehner ECR (1984) Predicative programming. Commun ACM 27:134–151MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Henzinger TA, Ho P-H, Wong-Toi H (1995) HyTech: The next generation. In: Proceedings of the 16th Annual IEEE Real-time Systems Symposium (RTSS 1995). IEEE Computer Society Press, pp 56–65Google Scholar
  25. 25.
    Henzinger TA, Kopke PW, Puri A, Varaiya P (1995) what's decidable about hybrid automata. In: Proceedings of the 27th Annual ACM symposium on the theory of computing. ACM, pp 373–382Google Scholar
  26. 26.
    Jin H, Somenzi F (2004) An incremental algorithm to check satisfiability for bounded model checking. In: Biere A, Strichman O (eds) Preliminary proceeding of BMC′04, ETH ZürichGoogle Scholar
  27. 27.
    Marques-Silva JP (1999) The impact of branching heuristics in propositional satisfiability algorithms. In: Proceedings of the 9th Portuguese Conference on Artificial Intelligence (EPIA).Google Scholar
  28. 28.
    Marques-Silva JP, Sakallah KA (1999) GRASP: A search algorithm for propositional satisfiability. IEEE Trans Comput 48(5):506–521CrossRefMathSciNetGoogle Scholar
  29. 29.
    Moskewicz MW, Madigan CF, Zhao Y, Zhang L, Malik S (2001) Chaff: engineering an efficient SAT solver. In: Proceedings of the 38th Design Automation Conference (DAC′01).Google Scholar
  30. 30.
    Motzkin TS (1936) Beiträge zur Theorie der linearen Ungleichungen. Doctoral dissertation, Universität ZürichGoogle Scholar
  31. 31.
    Nonnengart A, Weidenbach C (1999) Computing small clause normal forms. In: Robinson A, Voronkov A (eds) Handbook of automated reasoning, Elsevier Science B.VGoogle Scholar
  32. 32.
    Pfetsch ME (2002) The maximum feasible subsystem problem and vertex-facet incidences of polyhedra. Doctoral dissertation, TU BerlinGoogle Scholar
  33. 33.
    Ratschan S (2002) Continuous first-order constraint satisfaction with equality and d isequality constraints. In: van Hentenryck P (ed) Proceedings of the 8th international conference on principles and practice of constraint programming, vol 2470. Lecture Notes in Computer Science, Springer, pp 680–685Google Scholar
  34. 34.
    Strichman O (2000) Tuning SAT checkers for bounded model checking. In: Emerson EA, Sistla AP (eds) Computer aided verification (CAV 2000), vol 1855. Lecture Notes in Computer Science, Springer-Verlag, pp 480–494Google Scholar
  35. 35.
    Torrisi FD (2003) Modeling and reach-set computation for analysis and optimal control of discrete hybrid automata. Doctoral dissertation, ETH ZürichGoogle Scholar
  36. 36.
    Tseitin G (1968) On the complexity of derivations in propositional calculus. In: Slisenko A (ed) Studies in constructive mathematics and mathematical logicsGoogle Scholar
  37. 37.
    Warners JP (1998) A linear-time transformation of linear inequalities into conjunctive normal form. Inf Process Lett 68(2):63–69CrossRefMathSciNetGoogle Scholar
  38. 38.
    Whittemore J, Kim J, Sakallah K (2001) SATIRE: A new incremental satisfiability engine. In: Proceedings of the Design Automation Conference (DAC 2001). Las Vegas, Nevada, USA, pp 542–545Google Scholar
  39. 39.
    Wolfman SA, Weld DS (1999) The LPSAT engine & its application to resource planning. In: Dean T (ed) Proceeding of the 16th International Joint Conference on i Artificial Intelligence. Morgan Kaufmann Publishers, pp 310–315Google Scholar
  40. 40.
    Zhang L, Madigan CF, Moskewicz MW, Malik S (2001) Efficient conflict driven learning in a Boolean satisfiability solver. In: Proceeding of the International Conference on Computer-Aided Design (ICCAD′01), pp 279–285Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Computing Science, Research Group Hybrid SystemsCarl-von-Ossietzky UniversitätOldenburgGermany

Personalised recommendations