Advertisement

Foundations of Physics Letters

, Volume 19, Issue 1, pp 95–102 | Cite as

The Schrödinger-HJW Theorem

  • K. A. KirkpatrickEmail author
Original Article

Abstract

A concise presentation of Schrödinger's ancilla theorem (Proc. Camb. Phil. Soc. 32, 446 (1936)) and its several recent rediscoveries.

Key words:

quantum interpretation EPR correlations quantum measurement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. E. Schrödinger, “Probability relations between separated systems,” Proc. Camb. Phil. Soc. 32, 446–452 (1936).zbMATHGoogle Scholar
  2. 2.
    2. E. T. Jaynes, “Information theory and statistical mechanics. II,” Phys. Rev. 108(2), 171–190 (1957).CrossRefADSzbMATHMathSciNetGoogle Scholar
  3. 3.
    3. N. Hadjisavvas, “Properties of mixtures on non-orthogonal states,” Lett. Math. Phys. 5, 327–332 (1981).CrossRefMathSciNetGoogle Scholar
  4. 4.
    4. L. P. Hughston, R. Jozsa, and W. K. Wootters, “A complete classification of quantum ensembles having a given density matrix,” Phys. Lett. A 183, 14–18 (1993).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    5. N. Gisin, “Stochastic quantum dynamics and relativity,” Helvetica Physica Acta 62, 363–371 (1989).MathSciNetGoogle Scholar
  6. 6.
    6. N. D. Mermin, “What do these correlations know about reality? Nonlocality and the absurd,” Found. Phys. 29(4), 571–587 (1999); quant-ph/9807055.CrossRefMathSciNetGoogle Scholar
  7. 7.
    7. M. Jammer, The Philosophy of Quantum Mechanics (Wiley, New York, 1974).Google Scholar
  8. 8.
    8. K. A. Kirkpatrick, “Uniqueness of a convex sum of products of projectors,” J. Math. Phys. 43(1), 684–686 (2002), quant-ph/0104093.CrossRefADSzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.New Mexico Highlands UniversityLas Vegas

Personalised recommendations