# Carmeli's Cosmology Fits Data for an Accelerating and Decelerating Universe Without Dark Matter or Dark Energy

- 58 Downloads
- 10 Citations

## Abstract

A new relation for the density parameter Ω is derived as a function of expansion velocity υ based on Carmeli's cosmology. This density function is used in the luminosity distance relation *D* _{L}. A heretofore neglected source luminosity correction factor (1 − (υ/*c*)^{2})^{−1/2} is now included in *D* _{L}. These relations are used to fit type Ia supernovae (SNe Ia) data, giving consistent, well-behaved fits over a broad range of redshift 0.1 < *z* < 2. The best fit to the data for the local density parameter is Ω_{m} = 0.0401 ± 0.0199. Because Ω_{m} is within the baryonic budget there is no need for any dark matter to account for the SNe Ia redshift luminosity data. From this local density it is determined that the redshift where the universe expansion transitions from deceleration to acceleration is *z* _{t} = 1.095^{+0.264} _{−0.155}. Because the fitted data covers the range of the predicted transition redshift *z* _{t}, there is no need for any dark energy to account for the expansion rate transition. We conclude that the expansion is now accelerating and that the transition from a closed to an open universe occurred about 8.54 Gyr ago.

## Key words:

Carmeli's cosmology high-redshift type Ia supernovae density parameter dark matter## Preview

Unable to display preview. Download preview PDF.

## References

- 1.1. P. Astier
*et al.*, “The supernova legacy survey: Measurement of Ω_{M}, Ω_{λ}and*w*from the first-year data set,”*Astron. Astrophys.*(2005) arXiv:astro-ph/0510447Google Scholar - 2.2. M. Carmeli,
*Cosmological Special Relativity*, 2nd edn. (World Scientific, Singapore, 2002).zbMATHGoogle Scholar - 3.3.
*Ibid.*, pp. 117–124.zbMATHGoogle Scholar - 4.4.
*Ibid.*, pp. 125–127.zbMATHGoogle Scholar - 5.5.
*Ibid.*, p. 158.zbMATHGoogle Scholar - 6.6.
*Ibid.*, pp. 170–172.zbMATHGoogle Scholar - 7.7.
*Ibid.*, p. 159.zbMATHGoogle Scholar - 8.8. M. Carmeli, “Cosmological relativity: Determining the universe by the cosmological redshift as infinite and curved,”
*Int. J. Theor. Phys.***40**, 1871–1874 (2001).CrossRefADSGoogle Scholar - 9.9. M. Carmeli, J. G. Hartnett, and F. J. Oliveira, “The cosmic time in terms of the redshift,” arXiv:gr-qc/0506079,
*Found. Phys. Lett.***19**, 277–283 (2006).CrossRefGoogle Scholar - 10.10. W. L. Freedman, B. F. Madore, J. R. Mould, R. Hill, L. Ferrarese, R. C. Kennicutt Jr, A. Saha, P. B. Stetson, J. A. Graham, H. Ford, J. G. Hoessel, J. Huchra, S. M. Hughes, and G. D. Illingworth, “Distance to the Virgo cluster galaxy M100 from Hubble Space Telescope observations of Cepheids,”
*Nature***371**, 757–762 (1994).CrossRefADSGoogle Scholar - 11.11. W. L. Freedman, B. F. Madore, B. K. Gibson, L. Ferrarese, D. D. Kelson, S. Sakai, J. R. Mould, R. C. Kennicutt Jr, H. C. Ford, J. A. Graham, J. P. Huchra, S. M. G. Hughes, G. D. Illingworth, L. M. Macri, and P. B. Stetson, “Final results from the Hubble Space Telescope Key Project to measure the Hubble constant,”
*Ap. J.***553**, 47–72 (2001).CrossRefADSGoogle Scholar - 12.12. M. Fukugita, C. J. Hogan, and P. J. E. Peebles, “The cosmic baryon budget,”
*Ap. J.***503**, 518–530 (1998).CrossRefADSGoogle Scholar - 13.13. J. G. Hartnett, “The distance modulus determined from Carmeli's cosmology fits the accelerating universe data of the high-redshift type Ia supernovae without dark matter,”
*Found. Phys.***36**(6) (2006).CrossRefGoogle Scholar - 14.14. R. A. Knop
*et al.*, “New constraints on Ω_{M}, Ω_{λ}, and*w*from an independent set of 11 high-redshift supernovae observed with the Hubble Space Telescope,”*Ap. J.***598**, 102–137 (2003).CrossRefADSGoogle Scholar - 15.15. L.M. Krauss, “The end of the age problem, and the case for a cosmological constant revisited,”
*Ap. J.***501**, 461–466 (1998).CrossRefADSGoogle Scholar - 16.16. S. Perlmutter
*et al.*, “Measurements of the cosmological parameters Ω and λ from the first seven supernovae at*z*> 0.35,”*Ap. J.***483**, 565–581 (1997).CrossRefADSGoogle Scholar - 17.17. A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, and A. Diercks, “Observational evidence from supernovae for an accelerating universe and a cosmological constant,”
*Astron. J.***116**, 1009–1038 (1998).CrossRefADSGoogle Scholar - 18.18. A. G. Riess,
*et al.*, “Type Ia supernovae discoveries at*z*> 1 from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution,”*Ap. J.***607**, 665–687 (2004).CrossRefADSGoogle Scholar - 19.19. D. N. Spergel
*et al.*, “Wilkinson Microwave Anisotropy Probe (WMAP) three year results: Implications for cosmology,” arXiv:astro-ph/0603449.Google Scholar - 20.20. Y. Tutui
*et al.*, “Hubble constant at intermediate redshift using the CO-line Tully-Fisher relation,”*PASJ***53**, 701 (2001), arXiv:astro-ph/0108462.ADSGoogle Scholar