Foundations of Physics Letters

, Volume 19, Issue 6, pp 519–535 | Cite as

Carmeli's Cosmology Fits Data for an Accelerating and Decelerating Universe Without Dark Matter or Dark Energy

  • Firmin J. OliveiraEmail author
  • John G. Hartnett


A new relation for the density parameter Ω is derived as a function of expansion velocity υ based on Carmeli's cosmology. This density function is used in the luminosity distance relation D L. A heretofore neglected source luminosity correction factor (1 − (υ/c)2)−1/2 is now included in D L. These relations are used to fit type Ia supernovae (SNe Ia) data, giving consistent, well-behaved fits over a broad range of redshift 0.1 < z < 2. The best fit to the data for the local density parameter is Ωm = 0.0401 ± 0.0199. Because Ωm is within the baryonic budget there is no need for any dark matter to account for the SNe Ia redshift luminosity data. From this local density it is determined that the redshift where the universe expansion transitions from deceleration to acceleration is z t = 1.095+0.264 −0.155. Because the fitted data covers the range of the predicted transition redshift z t, there is no need for any dark energy to account for the expansion rate transition. We conclude that the expansion is now accelerating and that the transition from a closed to an open universe occurred about 8.54 Gyr ago.

Key words:

Carmeli's cosmology high-redshift type Ia supernovae density parameter dark matter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. P. Astier et al., “The supernova legacy survey: Measurement of ΩM, Ωλ and w from the first-year data set,” Astron. Astrophys. (2005) arXiv:astro-ph/0510447Google Scholar
  2. 2.
    2. M. Carmeli, Cosmological Special Relativity, 2nd edn. (World Scientific, Singapore, 2002).zbMATHGoogle Scholar
  3. 3.
    3. Ibid., pp. 117–124.zbMATHGoogle Scholar
  4. 4.
    4. Ibid., pp. 125–127.zbMATHGoogle Scholar
  5. 5.
    5. Ibid., p. 158.zbMATHGoogle Scholar
  6. 6.
    6. Ibid., pp. 170–172.zbMATHGoogle Scholar
  7. 7.
    7. Ibid., p. 159.zbMATHGoogle Scholar
  8. 8.
    8. M. Carmeli, “Cosmological relativity: Determining the universe by the cosmological redshift as infinite and curved,” Int. J. Theor. Phys. 40, 1871–1874 (2001).CrossRefADSGoogle Scholar
  9. 9.
    9. M. Carmeli, J. G. Hartnett, and F. J. Oliveira, “The cosmic time in terms of the redshift,” arXiv:gr-qc/0506079, Found. Phys. Lett. 19, 277–283 (2006).CrossRefGoogle Scholar
  10. 10.
    10. W. L. Freedman, B. F. Madore, J. R. Mould, R. Hill, L. Ferrarese, R. C. Kennicutt Jr, A. Saha, P. B. Stetson, J. A. Graham, H. Ford, J. G. Hoessel, J. Huchra, S. M. Hughes, and G. D. Illingworth, “Distance to the Virgo cluster galaxy M100 from Hubble Space Telescope observations of Cepheids,” Nature 371, 757–762 (1994).CrossRefADSGoogle Scholar
  11. 11.
    11. W. L. Freedman, B. F. Madore, B. K. Gibson, L. Ferrarese, D. D. Kelson, S. Sakai, J. R. Mould, R. C. Kennicutt Jr, H. C. Ford, J. A. Graham, J. P. Huchra, S. M. G. Hughes, G. D. Illingworth, L. M. Macri, and P. B. Stetson, “Final results from the Hubble Space Telescope Key Project to measure the Hubble constant,” Ap. J. 553, 47–72 (2001).CrossRefADSGoogle Scholar
  12. 12.
    12. M. Fukugita, C. J. Hogan, and P. J. E. Peebles, “The cosmic baryon budget,” Ap. J. 503, 518–530 (1998).CrossRefADSGoogle Scholar
  13. 13.
    13. J. G. Hartnett, “The distance modulus determined from Carmeli's cosmology fits the accelerating universe data of the high-redshift type Ia supernovae without dark matter,” Found. Phys. 36 (6) (2006).CrossRefGoogle Scholar
  14. 14.
    14. R. A. Knop et al., “New constraints on ΩM, Ωλ, and w from an independent set of 11 high-redshift supernovae observed with the Hubble Space Telescope,” Ap. J. 598, 102–137 (2003).CrossRefADSGoogle Scholar
  15. 15.
    15. L.M. Krauss, “The end of the age problem, and the case for a cosmological constant revisited,” Ap. J. 501, 461–466 (1998).CrossRefADSGoogle Scholar
  16. 16.
    16. S. Perlmutter et al., “Measurements of the cosmological parameters Ω and λ from the first seven supernovae at z > 0.35,” Ap. J. 483, 565–581 (1997).CrossRefADSGoogle Scholar
  17. 17.
    17. A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, and A. Diercks, “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J. 116, 1009–1038 (1998).CrossRefADSGoogle Scholar
  18. 18.
    18. A. G. Riess, et al., “Type Ia supernovae discoveries at z > 1 from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution,” Ap. J. 607, 665–687 (2004).CrossRefADSGoogle Scholar
  19. 19.
    19. D. N. Spergel et al., “Wilkinson Microwave Anisotropy Probe (WMAP) three year results: Implications for cosmology,” arXiv:astro-ph/0603449.Google Scholar
  20. 20.
    20. Y. Tutui et al., “Hubble constant at intermediate redshift using the CO-line Tully-Fisher relation,” PASJ 53, 701 (2001), arXiv:astro-ph/0108462.ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Joint Astronomy CentreHiloHawai'i
  2. 2.School of PhysicsUniversity of Western AustraliaCrawleyAustralia

Personalised recommendations