Foundations of Physics Letters

, Volume 18, Issue 5, pp 477–489 | Cite as

The Schwarzschild Black Hole as a Point Particle

Original Article

Abstract

The description of a point mass in general relativity (GR) is given in the framework of the field formulation of GR, where all the dynamical fields, including the gravitational field, are considered in a fixed background spacetime. With the use of stationary (not static) coordinates, non-singular at the horizon, the Schwarzschild solution is presented as a point-like field configuration in a whole background Minkowski space. The requirement of a stable η-causality stated recently by J. B. Pitts and W. C. Schieve (Found. Phys.34, 211 (2004)) is used essentially as a criterion for testing configurations.

Key words:

general relativity bimetric black holes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. S. W. Hawking, Plenary Lecture at GR17, Dublin, July 2004.Google Scholar
  2. 2.
    2. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford, 1975).Google Scholar
  3. 3.
    3. J. V. Narlikar, “Some conceptual problems in general relativity and cosmology,” in A Random Walk in Relativity and Cosmology, N. Dadhich, J. Krishna Rao, J. V. Narlikar, and C. V. Vishevara, eds. (Wiley Eastern, New Delhi, 1985) pp. 171–183.Google Scholar
  4. 4.
    4. A. N. Petrov and J. V. Narlikar, Found. Phys. 26, 1201 (1996); Erratum; Found. Phys. 28, 1023 (1998).Google Scholar
  5. 5.
    5. L. P. Grishchuk, A. N. Petrov, and A. D. Popova, Commun. Math. Phys. 94 379 (1984).CrossRefGoogle Scholar
  6. 6.
    6. A. D. Popova and A. N. Petrov, Int. J. Mod. Phys. A 3, 2651 (1988).CrossRefGoogle Scholar
  7. 7.
    7. A. N. Petrov, Class. Quantum Grav. 10, 2663 (1993).CrossRefGoogle Scholar
  8. 8.
    8. S. Deser, Gen. Relat. Grav. 1, 9 (1970); arXiv: gr-qc/0411023.CrossRefGoogle Scholar
  9. 9.
    9. R. H. Kraichnan, Phys. Rev. D 98, 1118 (1955).CrossRefGoogle Scholar
  10. 10.
    10. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973).Google Scholar
  11. 11.
    11. J. B. Pitts and W. C. Schieve, Found. Phys. 34, 211 (2004).CrossRefGoogle Scholar
  12. 12.
    12. L. P. Grishchuk, Usp. Fiz. Nauk 160, 147 (1990); Sov. Phys. Usp. 33, 669 (1990).Google Scholar
  13. 13.
    13. A. N. Petrov, Vestnik Moskov. Univer. Ser. 3. Fiz. Astron. 31 (5), 88 (1990).Google Scholar
  14. 14.
    14. A. N. Petrov, Astronom. Astrophys. Trans. 1, 195 (1992).Google Scholar
  15. 15.
    15. A. A. Vlasov, Soviet J. Nucl. Phys. 51, 1148 (1990).Google Scholar
  16. 16.
    16. Y. M. Loskutov, Soviet J. Nucl. Phys. 54, 903 (1991).MathSciNetGoogle Scholar
  17. 17.
    17. T. Damour, P. Jaranowski, and G. Schäfer, Phys. Lett. B 513, 147 (2001).CrossRefGoogle Scholar
  18. 18.
    18. L. Blanchet, T. Damour, and G. Esposito-Farése, Phys. Rev. D 69, 124007 (2004).CrossRefGoogle Scholar
  19. 19.
    19. G. Schaefer, “Binary black holes and gravitational wave production: Post-Newtonian analytic treatment,” in Current Trends in Relativistic Astrophysics, L. Fernendez-Jambrina, and L. M. Gonzolez-Romero, eds. (Lecture Notes in Physics, Vol. 617) (Springer, New York, 2003), p. 195.Google Scholar
  20. 20.
    20. J. Hartle, K. S. Thorne, and R. H. Price, Chap. V in: Black Holes: The Membrane Paradigm, K. S. Thorne, R. H. Price, and D. A. Macdonald, eds. (Yale University Press, New Haven, 1986).Google Scholar
  21. 21.
    21. A. J. S. Hamilton and J. P. Lisle, “The river model of black holes,” arXiv:gr-qc/0411060.Google Scholar
  22. 22.
    22. I. M. Gelfand and G. E. Shilov, Generalized functions. Vol. 1. Properties and Operations (Academic, New York, 1964).Google Scholar
  23. 23.
    23. S. M. Kopeikin, Astronom. Zh. 62, 889 (1985); Soviet Astron. 29, 516 (1985).Google Scholar
  24. 24.
    24. G. A. Korn and T. A. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1968).Google Scholar
  25. 25.
    25. A. N. Petrov, Int. J. Mod. Phys. D 4, 451 (1995).CrossRefGoogle Scholar
  26. 26.
    26. R. Penrose, Proc. R. Soc. Lond. A 381, 53 (1982).Google Scholar
  27. 27.
    27. K. T. Tod, Proc. R. Soc. Lond. A 388, 457 (1983).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Relativistic Astrophysics GroupSternberg Astronomical InstituteMoscowRussia

Personalised recommendations