Foundations of Physics Letters

, Volume 18, Issue 5, pp 401–429 | Cite as

Axiomatic Geometric Formulation of Electromagnetism with Only One Axiom: The Field Equation for the Bivector Field F with an Explanation of the Trouton-Noble Experiment

  • Tomislav IvezićEmail author
Original Article


In this paper we present an axiomatic, geometric, formulation of electromagnetism with only one axiom: the field equation for the Faraday bivector field F. This formulation with F field is a self-contained, complete and consistent formulation that dispenses with either electric and magnetic fields or the electromagnetic potentials. All physical quantities are defined without reference frames, the absolute quantities, i.e., they are geometric four-dimensional (4D) quantities or, when some basis is introduced, every quantity is represented as a 4D coordinate-based geometric quantity comprising both components and a basis. The new observer-independent expressions for the stress-energy vector T(n) (1-vector), the energy density U (scalar), the Poynting vector S and the momentum density g (1-vectors), the angular momentum density M (bivector) and the Lorentz force K ((1-vector) are directly derived from the field equation for F. The local conservation laws are also directly derived from that field equation. The 1-vector Lagrangian with the F field as a 4D absolute quantity is presented; the interaction term is written in terms of F and not, as usual, in terms of A. It is shown that this geometric formulation is in a full agreement with the Trouton-Noble experiment.

Key words:

electromagnetism with bivector field F the Trouton-Noble experiment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. D. Hestenes, Space-Time Algebra (Gordon & Breach, New York, 1966); Space-Time Calculus; available at:; New Foundations for Classical Mechanics (Kluwer Academic, Dordrecht, 1999), 2nd. edn.; Am. J Phys. 71, 691 (2003).Google Scholar
  2. 2.
    2. C. Doran and A. Lasenby, Geometric Algebra for Physicists (Cambridge University Press, Cambridge, 2003).Google Scholar
  3. 3.
    3. B. Jancewicz, Multivectors and Clifford Algebra in Electrodynamics (World Scientific, Singapore, 1989).Google Scholar
  4. 4.
    4. D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus (Reidel, Dordrecht, 1984).Google Scholar
  5. 5.
    5. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1977), 2nd edn., L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford, 1979), 4th edn. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1970). W.G.T.V. Rosser, Classical Electromagnetism via Relativity (Plenum, New York, 1968).Google Scholar
  6. 6.
    6. A. Einstein, Ann. Phys. 49, 769 (1916), tr. by W. Perrett and G.B. Jeffery, in The Principle of Relativity (Dover, New York, 1952).Google Scholar
  7. 7.
    7. Yu. N. Obukhov and F. W. Hehl, Phys. Lett. A 311, 277 (2003).CrossRefGoogle Scholar
  8. 8.
    8. F. W. Hehl and Yu. N. Obukhov, Foundations of Classical Electrodynamics (Birkhäuser, Boston, MA, 2003). F. W. Hehl, Yu. N. Obukhov, and G. F. Rubilar, physics/9907046. F.W. Hehl, Yu.N. Obukhov, physics/0005084.Google Scholar
  9. 9.
    9. J. J. Cruz Guzmán and Z. Oziewicz, Bull. Soc. Sci. Lett. Lódź 53, 107 (2003).Google Scholar
  10. 10.
    10. T. Ivezić, Found. Phys. 33, 1339 (2003); physics/0411166; to be published in Found. Phys. Lett..CrossRefGoogle Scholar
  11. 11.
    11. T. Ivezić, physics/0409118 v2, to be published in Found. Phys.Google Scholar
  12. 12.
    12. A. Einstein, Ann. Physik. 17, 891 (1905), tr. by W. Perrett and G.B. Jeffery, in The Principle of Relativity (Dover, New York, 1952).Google Scholar
  13. 13.
    13. T. Ivezić, Found. Phys. 31, 1139 (2001).CrossRefGoogle Scholar
  14. 14.
    14. T. Ivezić, Found. Phys. Lett. 15, 27 (2002); physics/0103026; physics/0101091.CrossRefGoogle Scholar
  15. 15.
    15. T. Ivezić, hep-th/0207250; hep-ph/0205277.Google Scholar
  16. 16.
    16. 16. M. Riesz, Clifford Numbers and Spinors, Lecture Series No. 38 (The Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, 1958).Google Scholar
  17. 17.
    17. D. Hestenes, in Clifford Algebras and their Applications in Mathematical Physics, F. Brackx et al, eds. (Kluwer Academic, Dordrecht, 1993).Google Scholar
  18. 18.
    18. T. Ivezić and Lj. Škovrlj, unpublished results. Lj. Škovrlj, Thesis (2002) (in Croatian).Google Scholar
  19. 19.
    19. R. M. Wald, General Relativity (Chicago University Press, Chicago, 1984). M. Ludvigsen, General Relativity, A Geometric Approach (Cambridge University Press, Cambridge, 1999). S. Sonego and M. A. Abramowicz, J. Math. Phys. 39, 3158 (1998). D.A. T. Vanzella, G. E. A. Matsas, H. W. Crater, Am. J. Phys. 64, 1075 (1996).Google Scholar
  20. 20.
    20. A. T. Hyman, Am. J. Phys. 65, 195 (1997). G. Mũnoz, Am. J. Phys. 65, 429 (1997).CrossRefGoogle Scholar
  21. 21.
    21. A. Sudbery, J. Phys. A: Math. Gen. 19, L33–36 (1986).CrossRefGoogle Scholar
  22. 22.
    22. W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism (Addison-Wesley, Reading, MA, 1962), 2nd edn.Google Scholar
  23. 23.
    23. L. Nieves, M. Rodriguez, G. Spavieri, and E. Tonni, Nuovo Cimento B 116, 585 (2001). G. Spavieri and G.T. Gillies, Nuovo Cimento B 118, 205 (2003).Google Scholar
  24. 24.
    24. F. T. Trouton and H. R. Noble, Philos. Trans. R. Soc. London Ser. A 202, 165 (1903).Google Scholar
  25. 25.
    25. H. C. Hayden, Rev. Sci. Instrum. 65, 788 (1994).CrossRefGoogle Scholar
  26. 26.
    26. A. K. Singal, Am. J. Phys. 61, 428 (1993).Google Scholar
  27. 27.
    27. M. von Laue, Phys. Z. 12, 1008 (1911).Google Scholar
  28. 28.
    28. W. Pauli, Theory of Relativity (Pergamon, New York, 1958).Google Scholar
  29. 29.
    29. S. A. Teukolsky, Am. J. Phys. 64, 1104 (1996).CrossRefGoogle Scholar
  30. 30.
    30. O. D. Jefimenko, J. Phys. A: Math. Gen. 32, 3755 (1999).CrossRefGoogle Scholar
  31. 31.
    31. T. Ivezić, Found. Phys. Lett. 12, 105 (1999).CrossRefGoogle Scholar
  32. 32.
    32. S. Aranoff, Nuovo Cimento B 10, 155 (1972).Google Scholar
  33. 33.
    33. T. Ivezić, Found. Phys. Lett. 12, 507 (1999).CrossRefGoogle Scholar
  34. 34.
    34. J. D. Bjorken and S. D. Drell, Relativistic Quantum Field (McGraw-Hill, New York, 1964). F. Mandl and G. Shaw, Quantum Field Theory (Wiley, New York, 1995). S. Weinberg, The Quantum Theory of Fields, Vol. I Foundations (Cambridge University, Cambridge, 1995).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Ruder Bošković InstituteZagrebCroatia

Personalised recommendations